K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Bạn tự kẻ hình nhá

Trên tia đối của tia MA lấy điểm D sao cho AM=MD

Xét △ACM và △ABM có

góc BMD=góc AMC

MC=BM

AM=MD

Nên △ACM=△ABM(c.g.c)

=>AC=BD

Xét △ABD có

AB+BD>AD( theo BĐT tam giác)

Mà AC=BD

=>AB+AC>AD

Mà AM=\(\dfrac{1}{2}AD\) hay AM=2.AD

=>AM<\(\dfrac{AB+AC}{2}\)(1)

Xét △ABM, ta có

AM>AB-BM (*)

Xét △ACM có

AM>AC-CM(**)

Từ (*) và (**), ta có

2.AM>AB+AC-BM+CM (mà BM+CM=BC)

=>2AM>AB+AC-BC

Hay AM>\(\dfrac{AB+AC-BC}{2}\)(2)

Từ (1) và (2)=>\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)(đpcm)

8 tháng 4 2021

câu trả lời của mình bị báo cáo rồi ;-;

* còn gì nữa đâu mà khóc với sầu*

6 tháng 12 2015

vẽ hình đi mình giải cho

a:

Lấy D sao cho M là trung điểm của AD

Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

(AB+AC)=AB+BD>AD

=>AB+AC>2AM

=>(AB+AC)/2>AM

1: Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔBAC

Suy ra: DE//BC

hay DM//BH

2: Xét ΔABH có

D là trung điểm của AB

DM//BH

Do đó: M là trung điểm của AH

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

a: AM=6-2=6cm

AN=12-3=9cm

=>AM/AB=AN/AC

=>MN//BC

b: Xet ΔAKC có NI//KC

nên NI/KC=AI/AK

Xét ΔABK có MI//BK

nên MI/BK=AI/AK

=>NI/KC=MI/BK

c: NI/KC=MI/BK

KC=KB

=>NI=MI

=>I là tđ của MN

1 tháng 4 2021

tự vẽ hình 

a, có AM/AB=1/3

mà AN/AC=1,5/4,5=1/3

=> AM/AB=AN/AC

=> MN//BC

b, Ta có MN//BC=> tam giác AMN đồng dạng tam giác ABC

=> <AMN= <ABC

Xét tam giác AMI và tam giác ABK

<AMI= <ABC (cmt)

<MAK chung

=> tam giác AMI đồng dạng tam giác ABK

MI/BK= AI/AK 

 

1: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)

MC=MB

Do đó: ΔMAC=ΔMEB

2: Ta có: ΔMAC=ΔMEB

nên AC=EB

13 tháng 5 2022

còn câu chứng minh EH < MA làm sao ạ 🥲