K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

mình mới học lớp 7 thui mà

30 tháng 7 2016

huhuhu em mới học lớp 6 thui mà sao lại nhờ em

xin lỗi nhak em ko giúp được đâu tì đứa khác giải giúp đi nhé

NV
27 tháng 8 2021

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị

18 tháng 2 2020

*Tìm Max:

Do x,y,z là các số không âm và x + y + z = 3 nên \(0\le x,y,z\le3\)

Trước hết ta chứng minh:\(\sqrt{x^2-6x+26}\le\frac{\left(\sqrt{17}-\sqrt{26}\right)}{3}x+\sqrt{26}\) với \(0\le x\le3\)

\(\Leftrightarrow\frac{2}{9}\left(\sqrt{442}-17\right)x\left(3-x\right)\ge0\)  (đúng)

Tương tự 2 bất đẳng thức còn lại và cộng theo vế thu được: \(M\le\sqrt{17}+2\sqrt{26}\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(3;0;0\right)\) và các hoán vị.

*Tìm min:

Ta có: \(\sqrt{x^2-6x+26}=\sqrt{\frac{1}{21}\left(2x-23\right)^2+\frac{17}{21}\left(x-1\right)^2}\)

\(\ge\sqrt{\frac{1}{21}\left(2x-23\right)^2}=\sqrt{\frac{1}{21}}\left|2x-23\right|=\sqrt{\frac{1}{21}}\left(23-2x\right)\) (vì \(2x-23\le2.3-23< 0\) )

Tương tự hai BĐT còn lại và cộng theo vế:

\(M\ge\sqrt{\frac{1}{21}}\left(69-2\left(x+y+z\right)\right)=3\sqrt{21}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

m=1 bạn ơi 

8 tháng 5 2021

SEIFWJNHGRHFQ24FTW

11 tháng 9 2020

Áp dụng BĐT Cauchy-Schwarz:  \(\left(\frac{1}{2^2}+\frac{1}{\left(\sqrt{6}\right)^2}+\frac{1}{\left(\sqrt{3}\right)^2}\right)\left(\left(2x\right)^2+\left(y\sqrt{6}\right)^2+\left(z\sqrt{3}\right)^2\right)\ge\)

\(\left(\frac{1}{2}.2x+\frac{1}{\sqrt{6}}.y\sqrt{6}+\frac{1}{\sqrt{3}}.z\sqrt{3}\right)^2=\left(x+y+z\right)^2=3^2=9\)

\(\Rightarrow\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4x^2+6y^2+3z^2\right)\ge9\)

\(\Leftrightarrow\frac{3}{4}A\ge9\Leftrightarrow A\ge12\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=6y=3z\\x+y+z=3\end{cases}\Leftrightarrow x=1,y=\frac{2}{3},z=\frac{4}{3}}\)

11 tháng 9 2020

Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)(Dấu "=" xảy ra <=> \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}\))

CM bđt đúng: Áp dụng bđt buniacopski

\(\left[\left(\frac{x_1}{\sqrt{y_1}}\right)^2+\left(\frac{x_2}{\sqrt{y_2}}\right)+\left(\frac{x_3}{\sqrt{y_3}}\right)\right]\left[\left(\sqrt{y_1}\right)^2+\left(\sqrt{y_2}\right)^2+\left(\sqrt{y}\right)^2\right]\)

\(\ge\left(\frac{x_1}{\sqrt{y_1}}+\sqrt{y_1}+\frac{x_2}{\sqrt{y_2}}+\frac{x_3}{\sqrt{y_3}}+\sqrt{y_2}+\frac{x_3}{y_3}\right)^2\)

<=> \(\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3}{y_3}\right)\left(y_1+y_2+y_3\right)\) \(\ge\left(x_1+x_2+x_3\right)^2\)

Áp dụng bđt vaofA, ta có:

A = \(4x^2+6y^2+3z^2=\frac{x^2}{\frac{1}{4}}+\frac{y^2}{\frac{1}{6}}+\frac{z_2}{\frac{1}{3}}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=\frac{9}{\frac{3}{4}}=12\)

 Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{3}}\\x+y+z=3\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=\frac{2}{3}\\z=\frac{4}{3}\end{cases}}\)

Vậy MinA = 12 <=> x = 1; y = 2/3; z = 4/3

2 tháng 4 2020

Ta có: \(6x^2+8xy+11y^2=2\left(x-y\right)^2+\left(2x+3y\right)^2\ge\left(2x+3y\right)^2\)

Tương tự: \(6y^2+8yz+11z^2\ge\left(2y+3z\right)^2\)

\(6z^2+8zx+11x^2\ge\left(2z+3x\right)^2\)

=> \(P\le\frac{x^2+3xy+y^2}{2x+3y}+\frac{y^2+3yz+z^2}{2y+3z}+\frac{z^2+3zx+x^2}{2z+3x}\)

=> \(4P\le\frac{4x^2+12xy+4y^2}{2x+3y}+\frac{4y^2+12yz+4z^2}{2y+3z}+\frac{4z^2+12zx+4x^2}{2z+3x}\)

\(=\frac{\left(2x+3y\right)^2-5y^2}{2x+3y}+\frac{\left(2y+3z\right)^2-5z^2}{2y+3z}+\frac{\left(2z+3x\right)^2-5x^2}{2z+3x}\)

\(=5\left(x+y+z\right)-5\left(\frac{y^2}{2x+3y}+\frac{z^2}{2y+3z}+\frac{x^2}{2z+3x}\right)\)

\(\le5\left(x+y+z\right)-5.\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=4\left(x+y+z\right)\)

Lại có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)với mọi x; y; z

=> \(4P\le4.\sqrt{9}=12\)

=> \(P\le3\)

Dấu "=" xảy ra <=> x = y = z = 1

Vậy max P = 3 đạt tại x = y = z = 1.

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

Áp dụng BĐT AM-GM:
$3x+\frac{16}{3}\ge 8\sqrt{x}$

$4y+4\geq 8\sqrt{y}$

$6z+\frac{8}{3}\geq 8\sqrt{z}$

Cộng theo vế: $P+12\geq 8(\sqrt{x}+\sqrt{y}+\sqrt{z})=24$

$\Rightarrow P\geq 12$
Vậy $P_{\min}=12$ khi $(x,y,z)=(\frac{16}{9}, 1, \frac{4}{9})$

$P+

AH
Akai Haruma
Giáo viên
3 tháng 2 2023

Lời giải:
Áp dụng BĐT Cô-si:

$\frac{1}{x(x+1)}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}$

Tương tự:

$\frac{1}{y(y+1)}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}$

$\frac{1}{z(z+1)}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}$

Cộng theo vế các BĐT trên:

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{4}(x+y+z)+\frac{3}{4}\geq \frac{9}{2}$

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{9}{4}+\frac{3}{4}\geq \frac{9}{2}$

$\Rightarrow \frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{3}{2}$ 

Vậy gtnn của biểu thức là $\frac{3}{2}$ khi $x=y=z=1$