K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

Ê Ngọc Mai sao ko viết bằng latex

9 tháng 7 2016

Chắc là giải như này

Ta có \(ab+ac+bc\le a^2+b^2+c^2=2\) (1)

\(2ab+1\ge2\sqrt{2ab}\ge2\) vì a,b dương(2)

(1)(2)=> \(ab+ac+bc\le2ab+1\). Suy ra \(ac+bc-ab\le1\)

Suy ra \(\frac{ac+bc-ab}{abc}\le\frac{1}{abc}\)=> đpcm

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

16 tháng 5 2016

dùng bất đẳng thức svac xơ là ra ngay luôn

19 tháng 4 2019

Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

TT : ....

\(\frac{a^2}{b+c}+\frac{b+c}{4}+\frac{b^2}{c+a}+\frac{a+c}{4}+\frac{c^2}{a+b}+\frac{a+b}{4}\ge a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\frac{b+c}{4}-\frac{a+c}{4}-\frac{a+b}{4}=\frac{a+b+c}{2}\)( 1 )

Mà a + b + c > 2 \(\Rightarrow\frac{a+b+c}{2}>1\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>1\)

DD
22 tháng 1 2021

Áp dụng bất đẳng thức Cauchy - Schwarz với 2 bộ số \(\left(a,b,c\right)\)và \(\left(1,1,1\right)\)ta có: 

\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2=1\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\).

Dấu \(=\)xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\).

22 tháng 1 2021

Còn cách khác :3 

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1^2}{3}=\frac{1}{3}\)

Đẳng thức xảy ra <=> a = b = c = 1/3

Vậy ta có điều phải chứng minh