K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2022

Bạn tham khảo :

undefined

23 tháng 5 2023

 Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích 

 \(P=a^3+b^3+c^3-3abc\)

\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).

Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.

Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).

Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm

2 tháng 8 2023

Có `xyz=2023=>2023=xyz` 

Thay vào ta có :

\(\dfrac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz+1+z}{1+xz+z}=1\left(dpcm\right)\)

 

14 tháng 7 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\ge\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}-\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\ge0\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)

\(\Rightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right)^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\) (luôn đúng)

Dấu = xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

Ta có:

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)

\(=\frac{x}{\sqrt{x^2+xy+yz+xz}}+\frac{y}{\sqrt{y^2+xy+yz+xz}}+\frac{z}{\sqrt{z^2+xy+yz+xz}}\)

\(=\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Cauchy:

\(\frac{x}{\sqrt{(x+y)(x+z)}}\leq \frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(\frac{y}{\sqrt{(y+z)(y+x)}}\leq \frac{1}{2}\left(\frac{y}{y+z}+\frac{y}{y+x}\right)\)

\(\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng theo vế:

\(\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

26 tháng 3 2022

không làm đc thì đừng có vào.

26 tháng 3 2022

không làm đc thì đừng có vào.

21 tháng 5 2018

đặt x/y=a hay xy/z=a hay j đó là ra nói chung là 4 biế
n lười nháp