K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2023

có \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)

=>`x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2>=0`

`<=>2x^2+2y^2+2z^2>=2xy+2yz+2zx`

`<=>x^2+y^2+z^2>=xy+yz+zx`

26 tháng 9 2023

dấu ''='' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.< =>x=y=z\)

7 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{z^2}+\dfrac{z^3}{x^2}\right)\left(x+y+z\right)\ge\left(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\right)^2\)

Cần chứng minh \(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\)

Dễ thấy;\(VT=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

BĐT được chứng minh

\("="\Leftrightarrow x=y=z\)

29 tháng 12 2016

Ta có

x2 + y2 + z2 + 3\(\ge\)2(x + y + z)

<=> (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1)\(\ge\)0

<=> (x - 1)2 + (y - 1)2 + (z - 1)2 \(\ge\)0 (đúng)

=> ĐPCM

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)