K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2020

đặt \(\left(a;b;c\right)=\left(x;2y;3z\right)\)\(\Rightarrow\)\(abc=1\)

bđt \(\Leftrightarrow\)\(\Sigma\frac{1}{a^3+b^3+1}\le1\)

\(VT\le\Sigma\frac{1}{ab\left(a+b\right)+abc}=\Sigma\frac{1}{ab\left(a+b+c\right)}=1\)

20 tháng 2 2023

loading...

20 tháng 2 2023

loading...

18 tháng 9 2016

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam

4 tháng 9 2020

đoạn sau thêm tham số để làm thì làm sao để tìm được tham số đó ạ, em cũng làm đến đó nhưng không tìm được tham số phù hợp

NV
4 tháng 9 2020

UCT mở rộng: ta sẽ đi tìm m;n sao cho: \(\frac{5b^3-a^3}{ab+3b^2}\le ma+nb\)

\(\Leftrightarrow a^3+ma^2b+\left(3m+n\right)ab^2+\left(3n-5\right)b^3\ge0\) (1)

\(\Leftrightarrow x^3+m.x^2+\left(3m+n\right)x+\left(3n-5\right)\ge0\) với \(x=\frac{a}{b}\)

Dự đoán rằng sẽ phân tích về dạng \(\left(a-b\right)^2.P\left(a;b\right)\) hay \(\left(x-1\right)^2P\left(x\right)\)

Do đó (1) phải có nghiệm \(x=1\)

\(\Rightarrow4m+4n-4=0\Rightarrow n=1-m\)

Thay vào: \(x^3+mx^2+\left(2m+1\right)x-3m-2\ge0\)

Hoocne hạ bậc: \(\left(x-1\right)\left(x^2+\left(m+1\right)x+3m+2\right)\ge0\)

\(\Rightarrow x^2+\left(m+1\right)x+3m+2\) cũng có 1 nghiệm \(x=1\)

\(\Rightarrow4m+4=0\Rightarrow m=-1\Rightarrow n=2\)

10 tháng 8 2016

\(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\Rightarrow a+b+c=3\)

\(Q=\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}\)

Cần tìm \(\beta;\gamma\) sau cho \(\frac{11b^3-a^3}{ab+4b^2}\le\gamma b+\beta a\)

\(\Leftrightarrow\frac{11.\left(\frac{b}{a}\right)^3-1}{\frac{b}{a}+4\left(\frac{b}{a}\right)^2}\le\gamma\frac{b}{a}+\beta\)

\(\Leftrightarrow\frac{11t^3-1}{t+4t^2}\le\gamma t+\beta\text{ }\left(t=\frac{b}{a}\right)\)

Dự đoán Q max khi a = b = c nên t = 1;

Tới đây dùng pp hệ số bất định để tìm ra \(\gamma=3;\text{ }\beta=-1\)

Vậy ta cần chứng minh \(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\Leftrightarrow-\frac{\left(a+b\right)\left(a-b\right)^2}{ab+4b^2}\le0\)

6 tháng 8 2016

Khổ rồi!

6 tháng 8 2016

sao khổ

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

1 tháng 12 2019

Ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2+y^2-xy\ge xy\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{x+y+z}.\frac{1}{xy}\)

Tương tự: \(\frac{1}{y^3+z^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{yz}\) ;\(\frac{1}{z^3+x^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{zx}\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{z^3+x^3+xyz}\)

\(\le\frac{1}{x+y+z}.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{\left(x+y+z\right)xyz}=\frac{1}{xyz}\)

Dấu \(=\) xảy ra \(\Leftrightarrow x=y=z>0\)