K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 3 2020

Lời giải:

Ta có:
\(\frac{1}{5!}=\frac{1}{1.2.3.4.5}< \frac{1}{3.4.5}\)

\(\frac{1}{6!}< \frac{1}{4.5.6}\)

.........

\(\frac{1}{2019!}< \frac{1}{2017.2018.2019}\)

Do đó:
\(C< 1+\frac{1}{2}+\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{2017.2018.2019}\)

\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2019-2017}{2017.2018.2019}\right)\)

\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2018.2019}\right)< \frac{3}{2}+\frac{1}{2}.\frac{1}{1.2}\)

\(C< \frac{7}{4}\)

11 tháng 3 2020

!

12 tháng 3 2020

Tham khảo nhé

Câu hỏi của Assassin_07 - Toán lớp 7 - Học toán với OnlineMath

13 tháng 3 2020

Nguyễn Trần Nhật Anh , đâu có cầnnn

12 tháng 3 2020

Ta có: \(\frac{1}{5!}=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}< \frac{1}{3\cdot4\cdot5}\)

\(\frac{1}{6!}< \frac{1}{1\cdot2\cdot3\cdot4\cdot5\cdot6}< \frac{1}{4\cdot5\cdot6}\)

..............

\(\frac{1}{2019!}=\frac{1}{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2019}< \frac{1}{2017\cdot2018\cdot209}\)

Do đó 

\(C< 1+\frac{1}{2}+\frac{1}{2\cdot3\cdot4}+\frac{1}{4\cdot5\cdot6}+....+\frac{1}{2017\cdot2018\cdot2019}\)

\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+.....+\frac{2019-2017}{2017\cdot2018\cdot2019}\right)\)

\(C< \frac{3}{2}+\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2018\cdot2019}\right)< \frac{3}{2}+\frac{1}{2}\cdot\frac{1}{1\cdot2}\)

\(\Rightarrow C< \frac{7}{4}\)

Nguồn: Nock Nock

22 tháng 2 2020

\(C=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}\)

\(=\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+...+\frac{1}{1.2.3...2019}\)

\(=\frac{1}{1}+\frac{1}{1}.\frac{1}{2}+\frac{1}{1}.\frac{1}{2}.\frac{1}{3}+...+\left(\frac{1}{1}.\frac{1}{2}.\frac{1}{3}...\frac{1}{2018}.\frac{1}{2019}\right)\)

\(=\left(1.1.1....1.1\right)+\left(\frac{1}{2}.\frac{1}{2}.\frac{1}{2}...\frac{1}{2}.\frac{1}{2}\right)+\left(\frac{1}{3}.\frac{1}{3}.\frac{1}{3}...\frac{1}{3}.\frac{1}{3}\right)+...+\left(\frac{1}{2018}.\frac{1}{2018}\right)+\frac{1}{2019}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}+\frac{1}{2019}\)

Nhận xét rằng:

\(1< \frac{7}{8076};2< \frac{7}{8076};3< \frac{7}{8076};...;\frac{1}{1154}>\frac{7}{8076};\frac{1}{1155}>\frac{7}{8076};...;\frac{1}{2018}>\frac{7}{8076};\frac{1}{2019}>\frac{7}{8076}\)

Do đó:

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}+\frac{1}{2019}>\frac{7}{8076}+\frac{7}{8076}+...+\frac{7}{8076}\)

Vì tổng C có 2019 số hạng, suy ra \(C>2019.\frac{7}{8076}=\frac{7}{4}\)

5 tháng 7 2020

Cái bài này bạn muốn làm thì bạn có thể lấy A-B hoặc B-A nếu nó ra kết quả dương thì tức là A>B hoặc B>A  nhưng bạn thử cái A-B nhé vì ta sẽ chứng minh được A>B nhé nhưng bạn không thể lấy trực tiếp được mà hay cho lên thành 1011A và 1010B để cho nó tròn và bạn sẽ thực hiện phép tính 1011A -1010B và sẽ ra bằng 1/1011 +1/1012+....+1/2020 bạn có thể lên mạng để họ dạy cách tính ra sao rồi bạn sẽ chuyển A sang vế phải và lúc đó vế trái sẽ là 1010A-1010B tức là bằng 1010x(A-B) nghĩa là bạn phải chứng minh vế phải lớn hơn 0 và bạn cứ tính ra vế phải không phải là ra một kết quả nhưng mà kiểu chứng minh dấu lớn hơn ấy bạn cứ làm đi nó cũng sẽ ra nhé .

12 tháng 8 2019

B = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}...+\frac{1}{1+2+3+...+2019}\)

    = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2019\times1010}\)

    = \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2019\times2020}\right)\)

   = \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2019\times2020}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{2020}\right)\)

\(=2\times\frac{1009}{2020}\)

\(=\frac{1009}{1010}< \frac{1010}{1010}=1\)

\(\Rightarrow B< 1\)

28 tháng 9 2020

Xét phân thức phụ sau, với n nguyên dương lớn hơn 1 ta có:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2\sqrt{n}}=2\left(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}\right)\sqrt{n}}\right)\)

\(=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được:

\(A=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)

\(A=2-\frac{2}{\sqrt{2020}}< 2=B\)

Vậy A < B

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020

22 tháng 5 2019

đặt 22018 = a ; 32019 = b ; 52020 = c

Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

\(\Rightarrow A>1>\frac{3}{4}>B\)

22 tháng 5 2019

Mình chỉ biết cách tính B thôi, đây nhé:

B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)

B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)