K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

CMTT :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2.}{ca}\)

Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)

CMTT : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)

\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

27 tháng 10 2019

\(a+b+c+ab+ac+bc=6abc\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{cases}}\) \(\Rightarrow x+y+z+xy+xz+yz=6\)

Cần chứng minh \(P=x^2+y^2+z^2\ge3\)

Ta có BĐT quen thuộc : 

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

Cộng vế với vế : 

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\) 

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

6 tháng 10 2019

 a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)

Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)

Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)

\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

NV
20 tháng 10 2019

\(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\) ; \(Q=\frac{1}{2}\left(ab+ac+bc\right)\)

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{1}{2}ab\)

Tương tự và cộng lại: \(P\ge a+b+c-Q\Rightarrow P+Q\ge a+b+c\)

Mặt khác \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow a+b+c\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\ge\frac{9}{3}=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

4 tháng 9 2020

Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được 

\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)

Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)

4 tháng 9 2020

Cách trâu bò :

Ta có : 

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)

+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)

\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)

Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )

5 tháng 4 2020

\(a+b+c+ab+bc+ca=6abc\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\)\(\Rightarrow x+y+z+xy+yz+zx=6\)

CM \(P=x^2+y^2+z^2\ge3\)

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

Cộng vế với vế

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\left(đpcm\right)\)

Vậy dấu "=" xảy ra khi \(x=y=z=1\) hoặc \(a=b=c=1\)

NV
5 tháng 4 2020

\(a+b+c+ab+bc+ca=6abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Ta lại có:

\(\frac{1}{a^2}+1+\frac{1}{b^2}+1+\frac{1}{c^2}+1-3\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}-3\)

\(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}\ge\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

Cộng vế với vế:

\(\frac{3}{a^2}+\frac{3}{b^2}+\frac{3}{c^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)-3\)

\(\Leftrightarrow3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge6.2-3=9\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

24 tháng 5 2017

From \(a+b+c+ab+bc+ca=6abc\)

\(\Rightarrow\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Let \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) we have

\(x^2+y^2+z^2\ge3\forall\hept{\begin{cases}x+y+z+xy+yz+xz=6\\x,y,z>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(x^2+1\ge2\sqrt{x^2}=2x\)

\(y^2+1\ge2\sqrt{y^2}=2y\)

\(z^2+1\ge2\sqrt{z^2}=2z\)

Cộng theo vế 3 BĐT trên ta có:

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)

Cộng theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)

Đẳng thức xảy ra khi \(a=b=c=1\)

#Nguồn:Xem câu hỏi (tui tự chép tui hihi :v)

24 tháng 5 2017

P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

hay 2P \(\ge\frac{2\left(a+b+c\right)}{abc}\)   (1)

mặt khác theo Cauchy ta có \(\frac{1}{a^2}+1\ge\frac{2}{a}\)

do đó P \(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\) hay P \(\ge\frac{2\left(ab+bc+ca\right)}{abc}-3\)   (2)

từ (1) và (2) suy ra 3P \(\ge\frac{2\left(a+b+c+ab+bc+ca\right)}{abc}-3=9\)

hay P \(\ge\)3

23 tháng 5 2018

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(a+b+c+ab+ac+bc=6abc\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Hay \(x+y+z+xy+yz+xz=6\)

Cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge3\)

Ta có : \(\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)\ge2\left(x+y+z\right)\) (BĐT Cosi)

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\) (BĐT Cosi)

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)=12\)

\(\Rightarrow x^2+y^2+z^2\ge3\) (đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

6 tháng 10 2019

\(VT=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)

\(=3+\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\)(1)

Theo BĐT AM-GM: \(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\right]\ge\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)

Tương tự: \(\frac{1}{2}\left[\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)

\(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{a^2}}\)

Cộng theo vế 3 BĐT trên rồi thay vào 1 ta sẽ thu được đpcm.

6 tháng 10 2019

Ý em là thay vào (1) !!