K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xy(x-y)2=(x+y)2       ĐK:x>y

(x+y)2=[(x+y)2-4xy]xy

 (x+y)2(xy-1)=4x2y2

\(\frac{1}{\left(x+y\right)^2}=\frac{xy-1}{4x^2y^2}=\frac{1}{4}\left(\frac{1}{xy}-\frac{1}{x^2y^2}\right)\)

\(\frac{1}{\left(x+y\right)^2}=\left[-\left(\frac{1}{xy}-\frac{1}{2}\right)^2+\frac{1}{4}\right]\le\frac{1}{16}\)

=> \(x+y\ge4\)

Dấu "=" xảy ra khi \(x=2+\sqrt{2}\),\(y=2-\sqrt{2}\)

NV
8 tháng 1 2022

Đề bài sai, biểu thức này ko có min

8 tháng 1 2022

vậy nó có max không thầy, nếu có thầy có thể giúp em tìm max ạ

29 tháng 3 2022

\(S=\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y^3}{16\left(x+16\right)}+\dfrac{2021}{2022}\)

\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{16}{80}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right).16}{16\left(y+16\right).100.80}}=\dfrac{3x}{20}\)

\(tương\) \(tự\Rightarrow\dfrac{y^3}{16\left(x+16\right)}\ge\dfrac{3y}{20}\)

\(\Rightarrow S\ge\dfrac{3x}{20}+\dfrac{3y}{20}-\left(\dfrac{x+16}{100}+\dfrac{y+16}{100}\right)-2.\dfrac{16}{80}+\dfrac{2021}{2022}=\dfrac{3x+3y}{20}-\dfrac{x+y+32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{15x+15y-x-y-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{14\left(x+y\right)-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}\)

\(xy=16\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow x+y\ge8\Rightarrow S\ge\dfrac{14.8-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{2}{5}+\dfrac{2021}{2022}\)

\(\Rightarrow minS=\dfrac{2}{5}+\dfrac{2021}{2022}\Leftrightarrow x=y=4\)

NV
29 tháng 3 2022

\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{1}{5}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right)}{16.100.5\left(y+16\right)}}=\dfrac{3x}{20}\)

Tương tự: \(\dfrac{y^3}{16\left(x+16\right)}+\dfrac{x+16}{100}+\dfrac{1}{5}\ge\dfrac{3y}{20}\)

Cộng vế:

\(S+\dfrac{x+y+32}{100}+\dfrac{2}{5}\ge\dfrac{3\left(x+y\right)}{20}+\dfrac{2021}{2022}\)

\(S\ge\dfrac{9}{20}\left(x+y\right)-\dfrac{42}{25}+\dfrac{2021}{2022}\ge\dfrac{9}{20}.2\sqrt{xy}-\dfrac{42}{25}+\dfrac{2021}{2022}=...\)

6 tháng 2 2021

Thử nhé

Vì P là bất đẳng thức đối xứng nên dự đoán điểm rơi \(x=y=z=\dfrac{\sqrt{2021}}{3}\)

Thay vo P ta duoc \(P=4.\sqrt{2021}\)

----------------------------------------------------------

\(P=\sum\dfrac{\left(x+y\right)\sqrt{\left(y+z\right)\left(z+x\right)}}{z}\)

Cauchy-Schwarz:

\(\Rightarrow\left(y+z\right)\left(z+x\right)\ge\left(z+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(y+z\right)\left(z+x\right)}\ge z+\sqrt{xy}\)

\(\Rightarrow P\ge\sum\dfrac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\ge\sum\dfrac{xz+yz+x\sqrt{y}+y\sqrt{x}}{z}=\sum x+y+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge\sum x+y+\dfrac{2xy}{z}\)

\(\Rightarrow P\ge2(x+y+z)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\)

Cauchy-Schwarz: \(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\ge\left(\sqrt{\dfrac{xy}{z}.\dfrac{yz}{z}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow P\ge2(x+y+z)+2\left(x+y+z\right)=4\left(x+y+z\right)=4\sqrt{2021}\)

\("="\Leftrightarrow x=y=z=\dfrac{\sqrt{2021}}{3}\)

NV
18 tháng 1

Do \(x-y=\dfrac{x+y}{\sqrt{xy}}>0\Rightarrow x>y\)

Khi đó:

\(\sqrt{xy}\left(x-y\right)=x+y\Rightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)

\(\Rightarrow xy\left[\left(x+y\right)^2-4xy\right]=\left(x+y\right)^2\)

\(\Rightarrow\left(xy-1\right)\left(x+y\right)^2=4x^2y^2\)

\(\Rightarrow\left(x+y\right)^2=\dfrac{4x^2y^2}{xy-1}\)

Do vế trái dương nên vế phải dương \(\Rightarrow xy-1>0\)

\(\Rightarrow\left(x+y\right)^2=\dfrac{4x^2y^2-4+4}{xy-1}=4xy+4+\dfrac{4}{xy-1}=4\left(xy-1\right)+\dfrac{4}{xy-1}+8\)

\(\ge2\sqrt{4\left(xy-1\right).\dfrac{4}{xy-1}}+8=16\)

\(\Rightarrow x+y\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(2+\sqrt{2};2-\sqrt{2}\right)\)

\(S=\dfrac{x^2+y^2+2xy}{x^2+y^2}+\dfrac{x^2+y^2+2xy}{xy}\)

\(=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)

\(=3+\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}\)

\(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}>=2\cdot\sqrt{\dfrac{2xy}{x^2+y^2}\cdot\dfrac{x^2+y^2}{2xy}}=2\)

Dấu = xảy ra khi \(\dfrac{x^2+y^2}{2xy}=\dfrac{2xy}{x^2+y^2}\)

=>x=y

x^2+y^2>=2xy

=>\(\dfrac{x^2+y^2}{2xy}>=1\)

Dấu = xảy ra khi x=y

=>S>=6

Dấu = xảy ra khi x=y