K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tôi bổ sung đề bài : Cho x,y,z >0 và x+y+z=1 tìm min của x^2(y+z)/yz + y^2(x+z)/xz + z^2(x+y)/xy?

                                  BĐT cô si: x²/z + z ≥ 2x và x²/y + y ≥ 2x => x²/z + x²/y + z+y ≥ 4x 
                                  => x²(y+z)/yz + y+z ≥ 4x 
                                  tương tự: y²(x+z)/xz + x+z ≥ 4y 
                                  và z²(x+y)/xy + x+y ≥ 4z 
                                  
                                  cộng lại hết: x²(y+z)/yz + y²(x+z)/xz + z²(x+y)/xy + 2(x+y+z) ≥ 4(x+y+z) 
                                  => x²(y+z)/yz + y²(x+z)/xz + z²(x+y)/xy ≥ 2(x+y+z) = 2 
                                  min = 2, đạt khi x = y = z = 1/3 
                                                                                         ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

5 tháng 6 2019

Bổ sung chi vậy bn

Có; \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+xz+yz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)

Vậy Min A=3/2

13 tháng 12 2021

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

13 tháng 12 2021

Lm dùm mik bài dưới lun vs

25 tháng 4 2023

Áp dụng BĐT Svácxơ, ta có:

\(A=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

\(MinA=1\Leftrightarrow x=y=z=\dfrac{2}{3}\)

 

20 tháng 7 2019

Áp dụng: (a + b)² ≥ 4ab Ta có: 
(x + y + z)² ≥ 4(x + y)z hay 1 ≥ 4(x + y)z (*)        (Vì x + y + z = 1) 
=> (x + y)/xyz ≥ 4(x + y)²z/xyz      ( Nhân hai vế (*) với (x + y)/xyz) 
=> (x + y)/xyz ≥ 4.4xyz/xyz = 16    (vì (x + y)² ≥ 4xy) 
Vậy min A = 16 <=> x = y; x + y = z và x + y + z = 1 
=> x = y = 1/4; z = 1/2

20 tháng 7 2019

bn Phùng Gia Bảo nhầm 1 chỗ r nhe

C1: \(A=\frac{x+y+z}{xyz}=\frac{1}{\left(\sqrt[3]{xyz}\right)^3}\ge\frac{1}{\left(\frac{x+y+z}{3}\right)^3}=\frac{1}{\frac{1}{27}}=27\)

C2: \(A=\frac{x+y+z}{xyz}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\ge\frac{9}{\frac{\left(x+y+z\right)^2}{3}}=\frac{9}{\frac{1}{3}}=27\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)

14 tháng 5 2022

-Sửa đề: x,y,z>0. Tìm min của \(A=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

-Áp dụng BDDT Caushy-Schwarz ta có:

\(A=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}\ge\dfrac{9}{3}=3\)

\(A_{min}=3\Leftrightarrow x=y=z=1\)

14 tháng 5 2022

thank nha

 

6 tháng 2 2021

Thử nhé

Vì P là bất đẳng thức đối xứng nên dự đoán điểm rơi \(x=y=z=\dfrac{\sqrt{2021}}{3}\)

Thay vo P ta duoc \(P=4.\sqrt{2021}\)

----------------------------------------------------------

\(P=\sum\dfrac{\left(x+y\right)\sqrt{\left(y+z\right)\left(z+x\right)}}{z}\)

Cauchy-Schwarz:

\(\Rightarrow\left(y+z\right)\left(z+x\right)\ge\left(z+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(y+z\right)\left(z+x\right)}\ge z+\sqrt{xy}\)

\(\Rightarrow P\ge\sum\dfrac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\ge\sum\dfrac{xz+yz+x\sqrt{y}+y\sqrt{x}}{z}=\sum x+y+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge\sum x+y+\dfrac{2xy}{z}\)

\(\Rightarrow P\ge2(x+y+z)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\)

Cauchy-Schwarz: \(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\ge\left(\sqrt{\dfrac{xy}{z}.\dfrac{yz}{z}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow P\ge2(x+y+z)+2\left(x+y+z\right)=4\left(x+y+z\right)=4\sqrt{2021}\)

\("="\Leftrightarrow x=y=z=\dfrac{\sqrt{2021}}{3}\)

30 tháng 6 2023

Áp dụng BĐT Cauchy-Schwarz ta có:
`B>=(1+2+3)^2/(x+y+z)=36/6=6`

Dấu "=" xảy ra `<=>(x;y;z)=(3/7;12/7;27/7)`

Vậy `B_(min)=6<=>(x;y;z)=(3/7;12/7;27/7)`