K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

\(\leq \frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{a+c}{2}}{2abc}=\frac{a+b+c}{2abc}=\text{VP}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

 

AH
Akai Haruma
Giáo viên
20 tháng 6 2018

Lời giải:

Áp dụng BĐT AM-GM cho các số dương:

\(a^2+bc\geq 2\sqrt{a^2bc}; b^2+ac\geq 2\sqrt{b^2ac}; c^2+ab\geq 2\sqrt{c^2ab}\)

Do đó:

\(\text{VT}=\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}\)

hay \(\text{VT}\leq \frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}(*)\)

Tiếp tục áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} \sqrt{bc}\leq \frac{b+c}{2}\\ \sqrt{ac}\leq \frac{a+c}{2}\\ \sqrt{ab}\leq \frac{a+b}{2}\end{matrix}\right.\Rightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}\leq a+b+c(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\leq \frac{a+b+c}{2abc}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

18 tháng 1 2019

Ta có:

\(\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{a^2bc}}=\dfrac{1}{2a\sqrt{bc}}=\dfrac{\sqrt{bc}}{2abc}\)

Tương tự:

\(\Rightarrow VT\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\dfrac{a+b+c}{2abc}\)

Dấu "=" khi a=b=c

NV
1 tháng 12 2018

\(VT=\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2a\sqrt{bc}}+\dfrac{1}{2b\sqrt{ac}}+\dfrac{1}{2c\sqrt{ab}}\)

\(VT\le\dfrac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2abc}\)

Mặt khác ta luôn có:

\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)

\(\Rightarrow2\left(a+b+c\right)-2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)\ge0\)

\(\Rightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le a+b+c\)

\(\Rightarrow VT\le\dfrac{a+b+c}{2abc}\)

Dấu "=" khi \(a=b=c\)

22 tháng 12 2018

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\)

\(\le\dfrac{1}{2\sqrt{a^2bc}}+\dfrac{1}{2\sqrt{b^2ac}}+\dfrac{1}{2\sqrt{c^2ab}}\)

\(=\dfrac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}\le\dfrac{a+b+c}{2abc}\)

\(\Leftrightarrow\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}-\dfrac{a+b+c}{2abc}\le0\left(đpcm\right)\)

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.

NV
1 tháng 5 2021

a.

Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) ; \(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

Cộng vế:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

NV
1 tháng 5 2021

b.

Ta có:

\(a^2+bc\ge2\sqrt{a^2bc}=2\sqrt{ab.ac}\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{ab.ac}}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{ac}\right)\)

Tương tự: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{bc}\right)\) ; \(\dfrac{1}{c^2+ab}\le\dfrac{1}{4}\left(\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

Cộng vế với vế:

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{2abc}\)

Dấu "=" xảy ra khi \(a=b=c\)

11 tháng 2 2022

3)undefined

NV
13 tháng 2 2022

1.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)

Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)

\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)

\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)

\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)

\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

26 tháng 10 2021

Sửa \(\le\) thành \(\ge\) nha bạn

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)

Áp dụng BĐT cosi:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)

\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)

Cộng VTV:

\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)

Dấu \("="\Leftrightarrow a=b=c=3\)