K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

1.

\(x+y=1\Rightarrow x=1-y\)

\(\Rightarrow x^2+y^2=\left(1-y\right)^2+y^2=2y^2-2y+1=2\left(y^2-y+\dfrac{1}{2}\right)=2\left(y^2-2y\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Vậy \(A_{Min}=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

2.

Ta có:

\(B=\dfrac{1}{x^2y^2}-\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{x^2y^2}-\dfrac{y^2}{x^2y^2}-\dfrac{x^2}{x^2y^2}=\dfrac{1-\left(x^2+y^2\right)}{x^2y^2}\le\dfrac{1-\dfrac{1}{2}}{\dfrac{1}{4}\cdot\dfrac{1}{4}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{8}}=\dfrac{1}{4}\)

Vậy \(B_{Max}=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{2}\)

Tui chỉ làm bừa thui nha. K chắc lắm. Thử lại đi haha

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

20 tháng 5 2021

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\) 

\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)

Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)

\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)

minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\)  \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)

maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)

 

13 tháng 10 2021

sai chiều bđt r

 

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)

\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)

13 tháng 12 2020

cm bn

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả 

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)

\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)

12 tháng 12 2020

 Nguyễn Việt Lâm anh oiiiiiiiiiii

30 tháng 4 2023

 Ta có \(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2=2xy+1\)

 Từ đó \(P=\dfrac{\left(x+y\right)^2}{x+y+1}\). Đặt \(x+y=t\left(t\ge0\right)\). Vì \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\) nên \(t\le\sqrt{2}\). ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{\sqrt{2}}\). Ta cần tìm GTLN của \(P\left(t\right)=\dfrac{t^2}{t+1}\) với \(0\le t\le\sqrt{2}\)

 Giả sử có \(0\le t_1\le t_2\le\sqrt{2}\). Ta có BDT luôn đúng \(\left(t_2-t_1\right)\left(t_2+t_1+t_2t_1\right)\ge0\) \(\Leftrightarrow t_2^2-t_1^2+t_2^2t_1-t_2t_1^2\ge0\) \(\Leftrightarrow t_1^2\left(t_2+1\right)\le t_2^2\left(t_1+1\right)\) \(\Leftrightarrow\dfrac{t_1^2}{t_1+1}\le\dfrac{t_2^2}{t_2+1}\) \(\Leftrightarrow P\left(t_1\right)\le P\left(t_2\right)\).  Như vậy với \(0\le t_1\le t_2\le\sqrt{2}\) thì \(P\left(t_1\right)\le P\left(t_2\right)\). Do đó P là hàm đồng biến. Vậy GTLN của P đạt được khi \(t=\sqrt{2}\) hay \(x=y=\dfrac{1}{\sqrt{2}}\), khi đó \(P=2\sqrt{2}-2\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$P=\frac{2xy+1}{x+y+1}=\frac{2xy+x^2+y^2}{x+y+1}=\frac{(x+y)^2}{x+y+1}$

$=\frac{a^2}{a+1}$ với $x+y=a$

Áp dụng BĐT AM-GM:

$1=x^2+y^2\geq \frac{(x+y)^2}{2}=\frac{a^2}{2}$

$\Rightarrow a^2\leq 2\Rightarrow a\leq \sqrt{2}$

$P=\frac{a^2}{a+1}=\frac{a}{1+\frac{1}{a}}$
Vì $a\leq \sqrt{2}\Rightarrow 1+\frac{1}{a}\geq 1+\frac{1}{\sqrt{2}}=\frac{2+\sqrt{2}}{2}$

$\Rightarrow P\leq \frac{\sqrt{2}}{\frac{2+\sqrt{2}}{2}}=-2+2\sqrt{2}$

Vậy $P_{\max}=-2+2\sqrt{2}$ khi $x=y=\frac{1}{\sqrt{2}}$