K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

\(S=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

\(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{17}}\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(1+4^2\right)}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\left(1\right)\)\(\left(bunhia\right)\)

\(tương-tự\Rightarrow\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\left(2\right)\)

\(\sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}+b+\dfrac{4}{c}+c+\dfrac{4}{a}\right)\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left[16a+\dfrac{4}{a}+16b+\dfrac{4}{b}+16c+\dfrac{4}{c}-15\left(a+b+c\right)\right]\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left[2\sqrt{16a.\dfrac{4}{a}}+2\sqrt{16b.\dfrac{4}{b}}+2\sqrt{16c.\dfrac{4}{c}}-15.\dfrac{3}{2}\right]\left(am-gm\right)\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left(16+16+16-\dfrac{45}{2}\right)=\dfrac{3\sqrt{17}}{2}\)

\(\Rightarrow MinS=\dfrac{3\sqrt{17}}{2}\Leftrightarrow a=b=c=\dfrac{1}{2}\)

 

 

 

NV
27 tháng 1 2021

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 8 2023

Ta có:

\(P=\dfrac{a+3}{a+1}+\dfrac{b+3}{b+1}+\dfrac{c+3}{c+1}\)

\(P=3+2.\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

\(P\ge3+2.\dfrac{9}{a+b+c+3}=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(min_P=6\), xảy ra khi \(a=b=c=1\)

NV
27 tháng 12 2020

\(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{9ab^2}{6b}=a-\dfrac{3}{2}ab\)

Tương tự và cộng lại:

\(T\ge a+b+c-\dfrac{3}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{2}\left(a+b+c\right)^2=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

18 tháng 4 2018

Áp dụng bất đẳng thức Cauchy-Schwarz: \(S=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}\ge\dfrac{\left(1+1+2+4\right)^2}{a+b+c+d}=\dfrac{64}{8}=8\)

18 tháng 4 2018

giải rõ một chút nhé !

NV
28 tháng 4 2021

\(P\ge\left(a+b+c\right)^2\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}\right)\)

\(P\ge\left(a+b+c\right)^2\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\right)\)

\(P\ge\left(a+b+c\right)^2\left(\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\dfrac{7}{\dfrac{1}{3}\left(a+b+c\right)^2}\right)=30\)

\(P_{min}=30\) khi \(a=b=c\)

9 tháng 12 2021

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

9 tháng 12 2021

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)