K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Áp dụng BĐT cô-si,ta có:

\(\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)>=2 căn bậc 4 của x.y

Vậy A>= -căn x-căn y - căn 4 của x.y=-(\(\sqrt{x}-\sqrt{y}\) )^2

Mà (\(\left(\sqrt{x}-\sqrt{y}\right)^2>=0\)

Suy ra A<=0

dấu = xảy ra khi và chỉ khi x=y

29 tháng 1 2022

\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)

\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)

"=" khi x = y = 1/2

29 tháng 1 2022

giúp mình voi ah

 

6 tháng 11 2021

a, \(\Rightarrow M=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

 \(\Rightarrow M=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b, \(x=3+2\sqrt{2}\Rightarrow M=\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}.1+1}-2}{\sqrt{2+2\sqrt{2}.1+1}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2-2\sqrt{2}+1}{2-1}=3-2\sqrt{2}\)

c, \(M>0\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\Rightarrow x>4\)

29 tháng 10 2023

đkxđ: \(z\ge1;x\ge2;y\ge3\)

Đặt \(a=\sqrt{z-1}\ge0;b=\sqrt{x-2}\ge0;c=\sqrt{y-3}\ge0\)

\(\Rightarrow z=a^2+1;x=b^2+2;y=c^2+3\)

\(\Rightarrow A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+2}+\dfrac{c}{c^2+3}\)

Do các biến \(a,b,c\) độc lập nhau nên ta xét từng phân thức một.

Đặt \(f\left(a\right)=\dfrac{a}{a^2+1}\) \(\Rightarrow f\left(a\right).a^2-a+f\left(a\right)=0\) (*)

Nếu \(f\left(a\right)=0\) thì \(a=0\), rõ ràng đây không phải là GTLN cần tìm.

Xét \(f\left(a\right)\ne0\)

Để pt (*) có nghiệm thì \(\Delta=\left(-1\right)^2-4\left[f\left(a\right)\right]^2\ge0\) 

\(\Leftrightarrow\left(1+2f\left(a\right)\right)\left(1-2f\left(a\right)\right)\ge0\)

\(\Leftrightarrow-\dfrac{1}{2}\le f\left(a\right)\le\dfrac{1}{2}\)

\(f\left(a\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{a}{a^2+1}=\dfrac{1}{2}\Leftrightarrow a^2+1=2a\Leftrightarrow a=1\) (nhận)

Vậy \(max_{f\left(a\right)}=\dfrac{1}{2}\).

 Tiếp đến, gọi \(g\left(b\right)=\dfrac{b}{b^2+2}\) \(\Rightarrow g\left(b\right).b^2-b+2g\left(b\right)=0\) (**)

 Tương tự nếu \(b=0\) thì vô lí. Xét \(b\ne0\). Khi đó để (**) có nghiệm thì \(\Delta=\left(-1\right)^2-8\left[g\left(b\right)\right]^2\ge0\)

\(\Leftrightarrow\left(1-2\sqrt{2}g\left(b\right)\right)\left(1+2\sqrt{2}g\left(b\right)\right)\ge0\)

\(\Leftrightarrow-\dfrac{1}{2\sqrt{2}}\le g\left(b\right)\le\dfrac{1}{2\sqrt{2}}\)

\(g\left(b\right)=\dfrac{1}{2\sqrt{2}}\Leftrightarrow\dfrac{b}{b^2+2}=\dfrac{1}{2\sqrt{2}}\Leftrightarrow b^2+2=2\sqrt{2}b\Leftrightarrow b=\sqrt{2}\) (nhận)

Vậy \(max_{g\left(b\right)}=\dfrac{1}{2\sqrt{2}}\)

Làm tương tự với \(h\left(c\right)=\dfrac{c}{c^2+3}\), ta được \(max_{h\left(c\right)}=\dfrac{1}{2\sqrt{3}}\), xảy ra khi \(c=\sqrt{3}\)

Vậy GTLN của A là \(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{6+3\sqrt{2}+2\sqrt{3}}{12}\), xảy ra khi \(\left(a,b,c\right)=\left(1,\sqrt{2},\sqrt{3}\right)\) hay \(\left(x,y,z\right)=\left(2,4,6\right)\).

29 tháng 10 2023

Cái chỗ cuối mình sửa thế này nhé

Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=1

28 tháng 9 2021

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24