K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm

12 tháng 6 2016

Vì \(x_1,x_2,x_3,....,x_n>0\)nên ta áp dụng bất đẳng thức Cosi, được : 

\(1+x_1\ge2\sqrt{x_1}\)(1)

\(1+x_2\ge2\sqrt{x_2}\)(2)

.............................

\(1+x_n\ge2\sqrt{x_n}\)(n)

Nhân n bất đẳng thức trên theo vế, được  :

\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_n\right)\ge2^n.\sqrt{x_1.x_2...x_n}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow x_1=x_2=x_3=...=x_n=1\)(thoả mãn điều kiện)

Vậy nghiệm nguyên dương của phương trình : \(x_1=x_2=...=x_n=1\)

NV
20 tháng 3 2021

\(\Leftrightarrow\left(x-2\right)\left(x^2-2x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x^2-2x-2=0\end{matrix}\right.\)

Không mất tính tổng quát, giả sử \(x_3=2\) và \(x_1;x_2\) là nghiệm của \(x^2-2x-2=0\)

Do \(2^n\) nguyên nên ta chỉ cần chứng minh \(P\left(n\right)=x_1^n+x_2^n\) nguyên

\(P\left(1\right)=x_1+x_2=2\in Z\) thỏa mãn

\(P\left(2\right)=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=8\in Z\) thỏa mãn

\(P\left(1\right).P\left(n\right)=\left(x_1+x_2\right)\left(x_1^n+x_2^n\right)=x_1^{n+1}+x_2^{n+1}+x_1x_2\left(x_1^{n-1}+x_2^{n-1}\right)\)

\(\Leftrightarrow2P\left(n\right)=P\left(n+1\right)-2P\left(n-1\right)\)

\(\Leftrightarrow P\left(n+1\right)=2P\left(n\right)+2P\left(n-1\right)\)

\(P\left(1\right);P\left(2\right)\) nguyên \(\Rightarrow P\left(3\right)\) nguyên \(\Rightarrow P\left(4\right)\) nguyên \(\Rightarrow...\Rightarrow P\left(n\right)\) nguyên với mọi n (đpcm)

20 tháng 3 2021

Thưa thầy khi làm bài này trên bài thi thì làm như cách của thầy có được điểm tối đa ko ạ vì em thấy đoạn cuối cứ sao sao ấy ạ

NV
30 tháng 12 2020

\(\dfrac{x_2}{x_1}=\dfrac{x_3}{x_2}=\dfrac{x_2+x_3}{x_1+x_2}=\dfrac{x_2+x_3}{3}\) (1)

\(\dfrac{x_3}{x_2}=\dfrac{x_4}{x_3}=\dfrac{x_3+x_4}{x_2+x_3}=\dfrac{12}{x_2+x_3}\)

\(\Rightarrow\dfrac{x_2+x_3}{3}=\dfrac{12}{x_2+x_3}\Rightarrow x_2+x_3=\pm6\)

Th1: \(x_2+x_3=6\) thế vào (1):

\(\dfrac{x_2}{x_1}=\dfrac{x_3}{x_2}=\dfrac{x_4}{x_3}=\dfrac{6}{3}=2\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2x_1\\x_4=2x_3\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}x_1+x_2=3\\x_3+x_4=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_1=3\\3x_3=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1;x_2=2\\x_3=4;x_4=8\end{matrix}\right.\)

\(\Rightarrow m=x_1x_2=2\)

Khỏi cần làm TH2 \(x_2+x_3=-6\) nữa, chọn luôn C

1 tháng 1 2021

đỉnh quá mài êyyyy

NV
6 tháng 1

Bài toán chia kẹo kinh điển đây mà.

Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:

loading...

Bây giờ có số tự nhiên n, ta phân tích nó như sau:

\(n=1+1+1+...+1+1+1\)

Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:

\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)

Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6. 

Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\)  tấm vách ngăn.

Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).

Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.

Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.

//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.

Khi đó:

\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)

\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)

Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm. 

Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:

\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên

Công thức đầu của em có vẻ bị sai :D

Wow, big brain, cảm ơn thầy nhiều ;) (mà hình như 2 công thức đó bằng nhau vì \(C^k_n=C^{n-k}_n\) ấy thầy).

8 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

29 tháng 11 2019