K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

12 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vì M ∈ (SAB)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SAB) = MN

và MN // SA

Vì N ∈ (SBC)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SBC) = NP

và NP // BC (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (α) ∩ (SCD) = PQ

Q ∈ CD ⇒ Q ∈ (ABCD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (ABCD) = QM

và QM // BC (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình thang.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (SAB) ∩ (SCD) = Sx và Sx // AB // CD

MN ∩ PQ = I ⇒ Giải sách bài tập Toán 11 | Giải sbt Toán 11

MN ⊂ (SAB) ⇒ I ∈ (SAB), PQ ⊂ (SCD) ⇒ I ∈ (SCD)

⇒ I ∈ (SAB) ∩ (SCD) ⇒ I ∈ Sx

(SAB) và (SCD) cố định ⇒ Sx cố định ⇒ I thuộc Sx cố định.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

a) Ta có:

\(\begin{array}{l}MN = \left( \alpha  \right) \cap \left( {ABC{\rm{D}}} \right)\\C{\rm{D}} = \left( {SC{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\PQ = \left( \alpha  \right) \cap \left( {SC{\rm{D}}} \right)\\MN\parallel C{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel C{\rm{D}}\parallel PQ\).

\( \Rightarrow MNPQ\) là hình bình hành.

b) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}I \in MQ \Rightarrow I \in \left( {SA{\rm{D}}} \right)\\I \in NP \Rightarrow I \in \left( {SBC} \right)\end{array} \right\} \Rightarrow I \in \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\ \Rightarrow SI = \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC = \left( {SBC} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel SI\).

Vậy \(I\) luôn luôn thuộc đường thẳng \(d\) đi qua \(S\) song song với \(AD\) và \(BC\) cố định khi \(M\) di động trên \(AD\).

5 tháng 1 2021

\(\left(\alpha\right)//SA\) và BC nên \(\left(\alpha\right)//\left(SAD\right)\)

=> MQ //SA, NP//SD  ta có

MN//PQ//AD//BC

ABCD : \(\dfrac{BM}{BA}=\dfrac{CN}{CD}\left(1\right)\)

Theo định lí Ta let trong tam giác:

\(\Delta SAB:\dfrac{BM}{BA}=\dfrac{BQ}{BS}=\dfrac{MQ}{SA}\left(2\right)\)

\(\Delta SCD:\dfrac{CN}{CD}=\dfrac{CP}{CS}=\dfrac{PN}{SD}\left(3\right)\)

Từ (1) (2) và (3) suy ra: \(MQ=NP=\dfrac{b-x}{b}a\)

\(PQ=\dfrac{x}{b}.2a\) 

\(MN=a+\dfrac{x}{b}a\)

=> thiết diện là hình thang cân và \(S_{td}=\dfrac{1}{2}\left(MN+PQ\right)\sqrt{MQ^2-\left(\dfrac{MN-PQ}{2}\right)^2}\)

\(\dfrac{1}{2}\left(\dfrac{ab+ax}{b}+\dfrac{2ax}{b}\right)\sqrt{\dfrac{a^2\left(b-x\right)^2}{b^2}-\dfrac{a^2\left(b-x\right)^2}{4b^2}}\)

=\(\dfrac{1}{2}.\dfrac{a\left(b+3x\right)}{b}.\dfrac{a\sqrt{3}\left(b-x\right)}{2b}\)

\(\dfrac{a^2\sqrt{3}}{12b^2}\left(3x+b\right)\left(3b-3x\right)\le\dfrac{a^2\sqrt{3}}{12b^2}\left(\dfrac{3x+b+3b-3x}{2}\right)^2=\dfrac{a^2\sqrt{3}}{3}\)

Vậy diện tích lớn nhất của thiết diện là \(\dfrac{a^2\sqrt{3}}{3}\) khi x= \(\dfrac{b}{3}\)

4 tháng 10 2023

[TEX]\frac{QP}{BC}=\frac{SQ}{SB}=\frac{AM}{AB}[/TEX]

\Rightarrow[TEX]QP=\frac{2ax}{b}[/TEX]

[TEX]\frac{QM}{SA}=\frac{BM}{BA}[/TEX]

\Rightarrow[TEX]QM=\frac{a(b-x)}{b}[/TEX]

Do MNPQ là hình thang cân

\Rightarrow[TEX]MN=\frac{a(b-x)}{b}+\frac{2ax}{b}=\frac{ab+ax}{b}[/TEX]

Vậy [TEX]S_{MNPQ}=\frac{(\frac{2ax}{b}+\frac{ab+ax}{b})\frac{\sqrt{3}a(b-x)} {2B}}{2}[/TEX]

=[TEX]\frac{(3ax+ab)(\sqrt{3}ab-\sqrt{3}ax)}{b^2}[/TEX]

NV
7 tháng 1

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

NV
7 tháng 1

loading...

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

TH1: \(\left( \alpha  \right)\) cắt đoạn \(AO\) tại \(I\).

Gọi \(E,F,G\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SA,AB,AD\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = FG\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow FG\parallel B{\rm{D}} \Rightarrow \frac{{AF}}{{AB}} = \frac{{AG}}{{AD}} = \frac{{FG}}{{B{\rm{D}}}}\left( 1 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAB} \right) = EF\\\left( {SAB} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow EF\parallel SB \Rightarrow \frac{{AF}}{{AB}} = \frac{{AE}}{{AS}} = \frac{{EF}}{{SB}}\left( 2 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAD} \right) = EG\\\left( {SAD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow EG\parallel SD \Rightarrow \frac{{AG}}{{AD}} = \frac{{AE}}{{AS}} = \frac{{EG}}{{SD}}\left( 3 \right)\end{array}\)

Từ (1), (2) và (3) suy ra \(\frac{{EF}}{{SB}} = \frac{{EG}}{{S{\rm{D}}}} = \frac{{FG}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(EF = EG = FG\). Vậy tam giác \(EFG\) đều.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

TH2: \(\left( \alpha  \right)\) cắt đoạn \(CO\) tại \(J\).

Gọi \(M,N,P\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SC,BC,C{\rm{D}}\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = NP\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow NP\parallel B{\rm{D}} \Rightarrow \frac{{CN}}{{CB}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\left( 4 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SBC} \right) = MN\\\left( {SBC} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow MN\parallel SB \Rightarrow \frac{{CM}}{{C{\rm{S}}}} = \frac{{CN}}{{CB}} = \frac{{MN}}{{SB}}\left( 5 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SCD} \right) = MP\\\left( {SCD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow MP\parallel SD \Rightarrow \frac{{C{\rm{M}}}}{{C{\rm{S}}}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{MP}}{{SD}}\left( 6 \right)\end{array}\)

Từ (4), (5) và (6) suy ra \(\frac{{MN}}{{SB}} = \frac{{MP}}{{S{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(MN = MP = NP\). Vậy tam giác \(MNP\) đều.

7 tháng 8 2019


HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}\left( \alpha  \right) \cap \left( {SBC} \right) = PQ\\\left( \alpha  \right) \cap \left( {ABCD} \right) = MN\\\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\end{array} \right\} \Rightarrow MN\parallel PQ\parallel BC\)

\( \Rightarrow MNPQ\) là hình thang (1).

\(\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha  \right) \cap \left( {SAB} \right) = MQ\\\left( {SA{\rm{D}}} \right) \cap \left( {SAB} \right) = SA\end{array} \right\} \Rightarrow MQ\parallel SA \Rightarrow \frac{{MQ}}{{SA}} = \frac{{BM}}{{AB}}\)

\(\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha  \right) \cap \left( {SC{\rm{D}}} \right) = NP\\\left( {SA{\rm{D}}} \right) \cap \left( {SC{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow NP\parallel SD \Rightarrow \frac{{NP}}{{SD}} = \frac{{CN}}{{C{\rm{D}}}}\)

\(\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha  \right) \cap \left( {ABC{\rm{D}}} \right) = MN\\\left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right) = AD\end{array} \right\} \Rightarrow MN\parallel AD\parallel BC \Rightarrow \frac{{BM}}{{AB}} = \frac{{CN}}{{C{\rm{D}}}}\)

\( \Rightarrow \frac{{MQ}}{{SA}} = \frac{{NP}}{{S{\rm{D}}}}\)

Mà tam giác \(SAD\) đều nên \(SA = S{\rm{D}}\)

\( \Rightarrow MQ = NP\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow MNPQ\) là hình thang cân.

b) Gọi \(I = MQ \cap NP\). Ta có:

\(\left. \begin{array}{l}\left( {SAB} \right) \cap \left( {SA{\rm{D}}} \right) = SI\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SC{\rm{D}}} \right) \cap \left( {ABCD} \right) = C{\rm{D}}\end{array} \right\} \Rightarrow SI\parallel AB\parallel C{\rm{D}}\)

\(SI\parallel N{\rm{D}},S{\rm{D}}\parallel NI \Rightarrow SIN{\rm{D}}\) là hình bình hành \( \Rightarrow S{\rm{D}} = NI\)

\(SI\parallel MA,S{\rm{A}}\parallel MI \Rightarrow SIMA\) là hình bình hành \( \Rightarrow S{\rm{A}} = MI\)

Xét tam giác \(IMN\) và tam giác \(SAD\) có: \(MN\parallel A{\rm{D,}}MI\parallel SA,NI\parallel S{\rm{D}},MN = A{\rm{D}}\)

 tam giác \(IMN\) là tam giác đều cạnh \(a\).

\(\begin{array}{l}SI\parallel AB \Rightarrow \frac{{SI}}{{BM}} = \frac{{IQ}}{{QM}} \Leftrightarrow \frac{{SI}}{{BM + SI}} = \frac{{IQ}}{{QM + IQ}} \Leftrightarrow \frac{{SI}}{{BM + MA}} = \frac{{IQ}}{{QM + IQ}}\\ \Leftrightarrow \frac{{SI}}{{AB}} = \frac{{IQ}}{{MI}} \Leftrightarrow IQ = \frac{{SI.MI}}{{AB}} = \frac{{x.a}}{a} = x\end{array}\)

\({S_{IMN}} = \frac{{{a^2}\sqrt 3 }}{4},{S_{IPQ}} = \frac{{{x^2}\sqrt 3 }}{4} \Rightarrow {S_{MNPQ}} = {S_{IMN}} - {S_{IPQ}} = \frac{{{a^2}\sqrt 3 }}{4} - \frac{{{x^2}\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{4}\left( {{a^2} - {x^2}} \right)\)