K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}=\sqrt{d}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\Rightarrow ab+bc+ac\ge\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{d}}\)\(\frac{1}{1+ab+bc+ac}\le\frac{\sqrt{d}}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)

Tương tự : \(\frac{1}{1+bc+cd+da}\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)

\(\frac{1}{1+cd+da+ac}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)

\(\frac{1}{1+da+ab+bd}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)

Cộng theo vế ta được đpcm.

10 tháng 11 2017

Đặt \(\hept{\begin{cases}x=\frac{a+b}{2}\\y=\frac{c+d}{2}\end{cases}}\)

Ta có:

\(\left(1-a\right)\left(1-b\right)\ge0\)

\(\Leftrightarrow ab+1\ge a+b\)

\(\Rightarrow ab+bc+ca+1\ge bc+ca+a+b=\left(a+b\right)\left(c+1\right)\ge\left(a+b\right)\left(c+d\right)\left(1\right)\)

Tương tự ta có:

\(bc+cd+db+1\ge\left(a+b\right)\left(b+d\right)\left(2\right)\)

\(cd+da+ac+1\ge\left(a+b\right)\left(c+d\right)\left(3\right)\)

\(da+ab+bd+1\ge\left(a+b\right)\left(c+d\right)\left(4\right)\)

Từ (1), (2), (3), (4) ta có:

\(VT\le\frac{a+b+c+d}{\left(a+b\right)\left(c+d\right)}=\frac{x+y}{2xy}\le\frac{xy+1}{2xy}\left(@\right)\)

Ta lại có:

\(VP\ge\frac{3}{4}+\frac{1}{4x^2y^2}\left(@@\right)\)

Từ \(\left(@\right),\left(@@\right)\)cái cần chứng minh trở thành.

\(\frac{xy+1}{2xy}\le\frac{3}{4}+\frac{1}{4x^2y^2}\)

\(\Leftrightarrow\left(xy-1\right)^2\ge0\)(đúng)

Vậy ta có ĐPCM.

16 tháng 2 2020

Svacxo chăng :33 Ai thử đi, e sợ biến nhiều lắm :))

7 tháng 8 2016

a) Xét ΔOIC và ΔABC có:

   \(\widehat{ACB}\) : góc chung

   \(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))

 => ΔOIC~ΔABC(g.g)

=>\(\frac{OI}{AB}=\frac{CI}{BC}\)

=> BC.OI=AB.CI

b) Theo định lý đảo của định lý ta-let vào ΔBDC :

=>  \(\frac{OI}{DC}=\frac{BI}{BC}\)