K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

Ta có : \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=20092009\)

\(\Rightarrow\left|x-y+y-z+z-t+t-x\right|=20092009\)

\(\Rightarrow\left|0\right|=20092009\)

\(\Rightarrow0=20092009\) ( Vô lý )

\(\Rightarrow\) Không có giá trị thõa mãn \(x,y,t,z\)

22 tháng 9 2016

Ta có:

(x - y) + (y - z) + (z - t) + (t - x)

= x - y + y - z + z - t + t - x

= 0, là số chẵn

Do |x - y| + |y - z| + |z - t| + |t - x| luôn cùng tính chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)

=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn

Mà theo đề bài |x - y| + |y - z| + |z - t| + |t - x| = 20092009, là số lẻ, vô lý

Vậy không tồn tại giá trị của x; y; z; t là số nguyên thỏa mãn đề bài

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

x,y,z,t là các số nguyên hay sao vậy bạn?

 

Vì :

| x - y | cùng tính chất chẵn lẻ với x - y

| y - z | cùng tính chất chẵn lẻ với y - z

| z - t | cùng tính chất chẵn lẻ với z - t

| t - x | cùng tính chất chẵn lẻ với t - x 

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) cùng chẵn lẻ với \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)\)

Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)=\left(x-x\right)+\left(y-y\right)+\left(z-z\right)+\left(t-t\right)=0\)

là số chẵn 

= > \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\)là số chẵn 

Mà 2017 là số lẻ \(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\ne2017\)

= > không có các số thỏa mãn 

25 tháng 3 2016

Từ hệ thức :

\(y=tx+\left(1-t\right)z\)

Bất đẳng thức 

\(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\)

Trở thành :

\(\left|z\right|-\left|y\right|\ge t\left(\left|z\right|-\left|x\right|\right)\)

hay 

\(\left|y\right|\le\left(1-t\right)\left|z\right|+t\left|x\right|\)

Vận dụng bất đẳng thức tam giác cho 

\(y=\left(1-t\right)x+tx\) ta có kết quả

Bất đẳng thức thứ hai, được chứng minh tương tự bởi

\(y=tx+\left(1-t\right)z\)

tương đương với :

\(y-x=\left(1-t\right)\left(z-x\right)\)

 

21 tháng 8 2017

\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=2017\)

Với \(x;y;z;t\ge0\) thì:

\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=\left|x-y+y-z+z-t+x-x\right|=0\)\(\Rightarrow0=2017\) (loại)

Với \(x;y;z;t< 0\) thì:

\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=\left|-x+y-y+z-z+t-t+x\right|=0\)\(\Rightarrow0=2017\) (loại)
Vậy ko có \(x;y;z;t\) thỏa mãn

20 tháng 12 2017

a,

\(-\dfrac{x}{\left(x-y\right)\left(z-x\right)}-\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(z-x\right)\left(y-z\right)}\)

\(\dfrac{-x\left(y-z\right)-y\left(z-x\right)-z\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(\dfrac{-xy+xz-yz+xy-zx+yz}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

= 0

13 tháng 4 2017

a)

TH1. nếu \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left|x\right|\ge\left|x+0\right|=\left|x\right|\\\left|y\right|\ge\left|0+y\right|=\left|y\right|\end{matrix}\right.\) hiển nhiên đúng

TH2.với x, y khác 0

x.y>0 nghĩa là x, y cùng dấu

\(\left|x+y\right|=\left|-x-y\right|=\left|x\right|+\left|y\right|\)

x.y<0 nghĩa là x, y trái dấu

\(\left|x+y\right|=\left|\left|x\right|-\left|y\right|\right|\)

Nếu \(\left|x\right|\ge\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|x\right|-\left|y\right|\)(1)

Nếu \(\left|x\right|\le\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|y\right|-\left|x\right|\)(2)

hiển nhiển \(\left|x\right|+\left|y\right|\) luôn lơn hơn (1) và (2)

TH1 và TH2 => dpcm

b) x,y,z,t có vai trò như nhau đối VT =>

không mất tính tổng quát g/s: \(\left|x\right|\ge\left|y\right|\ge\left|z\right|\ge\left|t\right|\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=\left|x\right|-\left|y\right|\\\left|y-z\right|=\left|y\right|-\left|z\right|\\\left|z-t\right|=\left|z\right|-\left|t\right|\\\left|t-x\right|=\left|x\right|-\left|t\right|\end{matrix}\right.\)

Cộng lại

VT =\(2\left(\left|x\right|-\left|t\right|\right)\) vậy VT luôn là một số chẵn VP là số lẻ => vô nghiệm

4 tháng 4 2017

Câu 2/ 

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)

Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)

Xét \(x^2,y^2,z^2\ge1\)

Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)

\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)

\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)

Dấu = xảy ra  khi \(x^2=y^2=z^2=1\)

\(\Rightarrow\left(x,y,z\right)=?\)

Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có

\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)

\(\Leftrightarrow x^4=3\left(l\right)\)

Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)

4 tháng 4 2017

Bài 2/

Ta có:  \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)

Vậy phương trình không có nghiệm nguyên dương.

9 tháng 12 2018

\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-xz}{\left(y+z\right)\left(x+y\right)}+\dfrac{z^2-xy}{\left(x+z\right)\left(z+y\right)}\)

\(=\dfrac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(x+z\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\left\{{}\begin{matrix}\left(x^2-yz\right)\left(y+z\right)=x^2y+x^2z-y^2z-yz^2\\\left(y^2-xz\right)\left(x+z\right)=y^2x+y^2z-x^2z-xz^2\\\left(z^2-xy\right)\left(x+y\right)=z^2x+z^2y-x^2y-xy^2\end{matrix}\right.\)

Đa thức trên bằng 0

\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\dfrac{-x^2}{\left(x-y\right)\left(z-x\right)}+\dfrac{-y^2}{\left(x-y\right)\left(y-z\right)}+\dfrac{-z^2}{\left(z-x\right)\left(y-z\right)}\)

\(=\dfrac{-x^2\left(y-z\right)-y^2\left(z-x\right)-z^2\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

Xét: \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\)

\(\)\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-xz-yz+z^2\right)\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Thêm dấu - đằng trc nữa suy ra bt có giá trị bằng 1 :P