

Nguyễn Ngọc Anh Minh
Giới thiệu về bản thân



































Xét tg ABO và tg ACO có
AO chung
AB=AC (gt)
OB=OC=R
=> tg ABO = tg ACO (c.c.c)
\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\Rightarrow AC\perp OC\) => AC là tiếp tuyến với (O)
b/
Xét tg vuông EOI và tg vuông COI có
OE=OC=R; OI chung => tg EOI = tg COI (hai tg vuông có 2 cạnh góc vuông bằng nhau)
Xét tg vuông EDI và tg vuông CDI có
DI chung
tg EOI = tg COI (cmt) => IE=IC
=> tg EDI = tg CDI (hai tg vuông có 2 cạnh góc vuông bằng nhau)
Xét tg DEO và tg DCO có
DO chung
OE=OC=R
tg EDI = tg CDI (cmt) => DE=DC
=> tg DEO = tg DCO (c.c.c)
\(\Rightarrow\widehat{DEO}=\widehat{DCO}=90^o\Rightarrow DE\perp OE\) => DE là tiếp tuyến với (O, R)
Nếu số lớn bớt đi 7 đơn vị thì được số lớn mới gấp 3 lần số bé
Khi đó hiệu 2 số là
257-7=250
Chia số lớn mới thành 3 phần thì số bé là 1 phần
Hiệu số phần bằng nhau là
3-1=2 phần
Giá trị 1 phần hay số bé là
250:2=125
Số lớn là
125x3+7=382
1/ Xét tg ABC và tg DBE có
BA=BD (gt)
DE//AC (gt) \(\Rightarrow\widehat{BAC}=\widehat{BDE}\) (góc so le trong)
\(\widehat{ABC}=\widehat{DBE}\) (góc đối đỉnh)
=> tg ABC = tg DBE (g.c.g)
2/
Ta có tg ABC = tg DBE (cmt) => BC=BE
Xét tư giác ACDE có
BA=BD (gt); BC=BE (cmt) => ACDE là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AE//CD (cạnh đối hbh)
3/
Xét tg ADC có
MA=MC (gt); BA=BD (gt) => BM là đường trung bình của tg ADC
=> BM//CD
Xét tg ADE có
BA=BD (gt); NE=ND (gt) => BN là đường trung bình của tg ADE
=> BN//AE
Mà CD//AE (cạnh đối hbh)
=> BM//AE (cùng //CD)
\(\Rightarrow BN\equiv BM\) (từ 1 điểm ngoài đường thẳng cho trước chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)
=> M, B, N thẳng hàng
a/
\(2^{1050}=\left(2^2\right)^{525}=4^{525}< 5^{525}< 5^{540}\)
b/
\(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)
c/
\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}>2^{55}=\left(2^5\right)^{11}=32^{11}>31^{11}\)
Gọi d là UC(n+7; n+8) nên
\(n+7⋮d\)
\(n+8⋮d\)
\(\Rightarrow n+8-\left(n+7\right)=1⋮d\Rightarrow d=1\)
=> (n+7) và (n+8) là 2 số nguyên tố cùng nhau
a/
Xét tg SAD có
SM=DM; SN=AN => MN là đường trung bình của tg SAD
=> MN//AD
Mà AD//BC (cạnh đối hbh)
=> MN//BC mà \(BC\in\left(SBC\right)\) => MN//(SBC)
C/m tương tự ta cũng có NP//(SCD)
b/
Ta có
NP//(SCD) (cmt) (1)
Xét tg SBD có
SP=BP (gt)
OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> PO là đường trung bình của tg SBD
=> PO//SD mà \(SD\in\left(SCD\right)\) => PO//(SCD) (2)
Từ (1) và (2) => (ONP)//(SCD)
C/m tương tự ta cũng có (OMN)//(SBC)
c/
Trong (ABCD) , qua O dựng đường thẳng // AD cắt AB và CD lần lượt tại H và K Ta có
MN//AD (cmt)
=> KH//MN
\(O\in\left(OMN\right);O\in KH\)
\(\Rightarrow KH\in\left(OMN\right)\) mà \(H\in AB;K\in CD\)
=>K; H là giao của (OMN) với CD và AB
d/
Ta có
KH//AD
AB//CD => AH//DK
=> AHKD là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AD=HK
Ta có
MN là đường trung bình của tg SAD (cmt)
\(\Rightarrow MN=\dfrac{AD}{2}\) mà AD=HK (cmt)
\(\Rightarrow MN=\dfrac{HK}{2}\Rightarrow\dfrac{MN}{HK}=\dfrac{1}{2}\)
a/
\(\widehat{xOt}=\widehat{tOy}=\dfrac{\widehat{xOy}}{2}=\dfrac{60^o}{2}=30^o\)
b/
\(\widehat{xAm}=\widehat{xOy}=60^o\)
Hai góc trên ở vị trí đồng vị => Am//Oy
c/
Ta có
Am//Oy (cmt) \(\Rightarrow\widehat{ACO}=\widehat{tOy}\) (góc so le trong)
BC//Ox (gt) \(\Rightarrow\widehat{BCO}=\widehat{xOt}\) (góc so le trong)
Mà \(\widehat{xOt}=\widehat{tOy}\left(cmt\right)\)
\(\Rightarrow\widehat{ACO}=\widehat{BCO}\)
a/
\(A=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)=\)
\(=20\left(1+4^2+4^4+...+4^{22}\right)⋮20\)
b/
\(A=\left(4+4^2+4^3\right)+...+\left(4^{22}+4^{23}+4^{24}\right)=\)
\(=4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)=\)
\(=21\left(4+4^4+...+4^{22}\right)⋮21\)
c/
A đồng thời chia hết cho 20 và 21, mà 20 và 21 là 2 số nguyên tố cùng nhau
\(\Rightarrow A⋮20.21=420\)
Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)
\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)
\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)
\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)
Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)
Xét tg ABC có
\(\widehat{C}+\widehat{ABC}+\widehat{BAC}=180^o\) (tổng các góc trong 1 tg bằng 360 độ)
Ta có Ax//By
\(\Rightarrow\widehat{ABy}+\widehat{BAx}=180^o\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{C}+\widehat{ABC}+\widehat{ABy}+\widehat{BAC}+\widehat{BAx}=180^o+180^o=360^o\)
\(\Rightarrow\widehat{C}+\widehat{B}+\widehat{A}=360^o\)