K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

A B C M H K

a) Dễ thấy \(\Delta HBM\) và \(\Delta KCM\) là nửa các tam giác đều

Đặt BM = x ; CM = y \(\Rightarrow x+y=a\) (không đổi)

Ta có \(MH=sinB.BM=\frac{\sqrt{3}x}{2}\) ; \(MK=sinC.CM=\frac{\sqrt{3}y}{2}\)

\(\Rightarrow MH+MK=\frac{\sqrt{3}}{2}\left(x+y\right)=\frac{\sqrt{3}a}{2}\) không đổi.

b) Vì MH + MK không đổi khi M di chuyển trên BC (câu a) nên MH.MK đạt giá trị lớn nhất \(\Leftrightarrow MH=MK\)

Theo bất đẳng thức Cosi, ta có : \(MH.MK\le\frac{\left(MH+MK\right)^2}{4}=\frac{\left(\frac{\sqrt{3}a}{2}\right)^2}{4}=\frac{3a^2}{16}\)

Vậy Max MH.MK \(=\frac{3a^2}{16}\Leftrightarrow MH=MK\Leftrightarrow MB=MC\Leftrightarrow\)M là trung điểm của BC

13 tháng 7 2020

1) Từ \(CQ.AP=a^2\)ta được \(CQ.AP=AC^2\)hay \(\frac{CQ}{AC}=\frac{AC}{AP}\)

Xét hai tam giác ACP và CQA có \(\frac{CQ}{AC}=\frac{AC}{AP}\)và \(\widehat{PAC}=\widehat{QCA}\left(=60^0\right)\)nên \(\Delta ACP~\Delta CQA\)

Từ đó ta được \(\widehat{ACP}=\widehat{AQC}\). Mà ta có \(\widehat{ACP}=\widehat{ACB}+\widehat{BCP}=60^0+\widehat{BCP}\)

và \(\widehat{AQC}=\widehat{ABC}+\widehat{BAM}=60^0+\widehat{BAM}\)

Do đó \(\widehat{MAB}=\widehat{BCM}\), suy ra tứ giác ABMC nội tiếp

Vậy bốn điểm A, B, M, C cùng thuộc một đường tròn (đpcm)

2) 

a) Do tứ giác ABMC và AIMK nội tiếp nên \(\widehat{BMC}=\widehat{IMK}=120^0\), suy ra \(\widehat{IMB}=\widehat{KMC}\)

Mà hai tứ giác BIMJ và CKJM nội tiếp nên ta lại có \(\widehat{BMI}=\widehat{BJI};\widehat{KMC}=\widehat{KJC}\)

Do đó ta được \(\widehat{BJI}=\widehat{KJC}\)nên ba điểm I, J, K thẳng hàng

Dễ thấy hai tam giác BMC và IMK đồng dạng với nhau. Do đó ta được \(\frac{IK}{BC}=\frac{MI}{MB}\)

Mà ta có \(IM\le MB\) nên ta được \(IK\le BC\) hay \(IK\le a\) , dấu bằng xảy ra khi \(MB\perp AB\) hay M nằm chính giữa cung nhỏ BC, khi đó Q là trung điểm cạnh BC.
Vậy IK lớn nhất khi Q là trung điểm của BC

b) Do tứ giác BIMJ nội tiếp nên ta có \(\widehat{IMJ}=\widehat{ABC}=60^0=\widehat{ACB}\). Lại có \(\widehat{MIJ}=\widehat{MBJ}=\widehat{MAC}\)

Do đó hai tam giác IMJ và ACQ đồng dạng, do đó ta được \(\frac{MJ}{MI}=\frac{CQ}{CA}\). Tương tự ta được \(\frac{MJ}{ MK}=\frac{BQ}{AB}\)

Từ đó suy ra \(\frac{MJ}{MI}+\frac{MJ}{MK}=\frac{CQ}{CA}+\frac{BQ}{AB}=1\Rightarrow MJ\left(MK+MI\right)=MI.MK\)

Hay \(MI.MK-MJ.MI-MJ.MK=0\)

Mặt khác ta lại có \(S_{ABM}=\frac{1}{2}AB.MI;S_{BCM}=\frac{1}{2}BC.MJ;S_{ACM}=\frac{1}{2}MK.AC\)

Mà \(S_{ABM}+S_{ACM}=S_{BCM}+S_{ABC}\)và \(S_{ABC}=\frac{a^2\sqrt{3}}{4}\). Nên ta có \(AB.MI+MK.AC=BC.MJ+\frac{a^2\sqrt{3}}{2}\)hay \(MI+MK=MJ+\frac{a\sqrt{3}}{2}\)

Do đó \(\left(MI+MK-MJ\right)^2=\frac{3a^2}{4}\)

Suy ra \(MI^2+MJ^2+MK^2+2\left(MI.MK-MI.MJ-MJ.MK\right)=\frac{3a^2}{4}\)

Mà \(MI.MK-MJ.MI-MJ.MK=0\)(cmt) nên \(MI^2+MJ^2+MK^2=\frac{3a^2}{4}\)(không đổi)

Vậy \(MI^2+MJ^2+MK^2\)không đổi khi Q thay đổi trên cạnh BC (đpcm)

11 tháng 3 2020

Giả sử M nằm giữa B and D 

a) 
tam giác IED có:

\(\hept{\begin{cases}IE=ID=\frac{1}{2}AM\\\widehat{EID}=2.\widehat{BAD}=60^0\end{cases}}\)

=> TAM GIÁC IED là tam giác đều (1)
Chứng minh tương tự ta được tam giác IFD là tam giác đều (2).

Từ (1) và (2) suy ra DEIF là hình thoi.

b) Vì
tam giác ABC đều nên trực tâm H củng là trọng tâm. Suy ra:
AH = 2.HD
Gọi P là trung điểm của AH
=> AP = PH = HD. Suy ra IP, KH thứ tự là đường trung bình của các tam giác AMH và DIP

=> MH // IP và KH // IP, 

=> M , K , H thẳng hàng 

c)

Vì tam giac  EDK vuông tại K nên ta có: EF =2.EK = 2. ED.sinKDE =\(\sqrt{3}\).DE do đó EF đạt GTNN

=>DE đạt GTNN => \(DE\perp AB=>M\)trùng zs  D ( Có thể dùng đ.lý pitago để tính EF theo DE ).

d) ta có diện tích DEIF=\(\frac{1}{2}DI.EF\)theo DE

e)e) Tìm quỹ tích của K thông qua quỹ tích của I.

bài này dài lắm . nên gợi ý như thế thôi . cần hỏi chỗ nào ib riêng cho mình ^^