K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

A B C M H K

a) Dễ thấy \(\Delta HBM\) và \(\Delta KCM\) là nửa các tam giác đều

Đặt BM = x ; CM = y \(\Rightarrow x+y=a\) (không đổi)

Ta có \(MH=sinB.BM=\frac{\sqrt{3}x}{2}\) ; \(MK=sinC.CM=\frac{\sqrt{3}y}{2}\)

\(\Rightarrow MH+MK=\frac{\sqrt{3}}{2}\left(x+y\right)=\frac{\sqrt{3}a}{2}\) không đổi.

b) Vì MH + MK không đổi khi M di chuyển trên BC (câu a) nên MH.MK đạt giá trị lớn nhất \(\Leftrightarrow MH=MK\)

Theo bất đẳng thức Cosi, ta có : \(MH.MK\le\frac{\left(MH+MK\right)^2}{4}=\frac{\left(\frac{\sqrt{3}a}{2}\right)^2}{4}=\frac{3a^2}{16}\)

Vậy Max MH.MK \(=\frac{3a^2}{16}\Leftrightarrow MH=MK\Leftrightarrow MB=MC\Leftrightarrow\)M là trung điểm của BC

13 tháng 7 2020

1) Từ \(CQ.AP=a^2\)ta được \(CQ.AP=AC^2\)hay \(\frac{CQ}{AC}=\frac{AC}{AP}\)

Xét hai tam giác ACP và CQA có \(\frac{CQ}{AC}=\frac{AC}{AP}\)và \(\widehat{PAC}=\widehat{QCA}\left(=60^0\right)\)nên \(\Delta ACP~\Delta CQA\)

Từ đó ta được \(\widehat{ACP}=\widehat{AQC}\). Mà ta có \(\widehat{ACP}=\widehat{ACB}+\widehat{BCP}=60^0+\widehat{BCP}\)

và \(\widehat{AQC}=\widehat{ABC}+\widehat{BAM}=60^0+\widehat{BAM}\)

Do đó \(\widehat{MAB}=\widehat{BCM}\), suy ra tứ giác ABMC nội tiếp

Vậy bốn điểm A, B, M, C cùng thuộc một đường tròn (đpcm)

2) 

a) Do tứ giác ABMC và AIMK nội tiếp nên \(\widehat{BMC}=\widehat{IMK}=120^0\), suy ra \(\widehat{IMB}=\widehat{KMC}\)

Mà hai tứ giác BIMJ và CKJM nội tiếp nên ta lại có \(\widehat{BMI}=\widehat{BJI};\widehat{KMC}=\widehat{KJC}\)

Do đó ta được \(\widehat{BJI}=\widehat{KJC}\)nên ba điểm I, J, K thẳng hàng

Dễ thấy hai tam giác BMC và IMK đồng dạng với nhau. Do đó ta được \(\frac{IK}{BC}=\frac{MI}{MB}\)

Mà ta có \(IM\le MB\) nên ta được \(IK\le BC\) hay \(IK\le a\) , dấu bằng xảy ra khi \(MB\perp AB\) hay M nằm chính giữa cung nhỏ BC, khi đó Q là trung điểm cạnh BC.
Vậy IK lớn nhất khi Q là trung điểm của BC

b) Do tứ giác BIMJ nội tiếp nên ta có \(\widehat{IMJ}=\widehat{ABC}=60^0=\widehat{ACB}\). Lại có \(\widehat{MIJ}=\widehat{MBJ}=\widehat{MAC}\)

Do đó hai tam giác IMJ và ACQ đồng dạng, do đó ta được \(\frac{MJ}{MI}=\frac{CQ}{CA}\). Tương tự ta được \(\frac{MJ}{ MK}=\frac{BQ}{AB}\)

Từ đó suy ra \(\frac{MJ}{MI}+\frac{MJ}{MK}=\frac{CQ}{CA}+\frac{BQ}{AB}=1\Rightarrow MJ\left(MK+MI\right)=MI.MK\)

Hay \(MI.MK-MJ.MI-MJ.MK=0\)

Mặt khác ta lại có \(S_{ABM}=\frac{1}{2}AB.MI;S_{BCM}=\frac{1}{2}BC.MJ;S_{ACM}=\frac{1}{2}MK.AC\)

Mà \(S_{ABM}+S_{ACM}=S_{BCM}+S_{ABC}\)và \(S_{ABC}=\frac{a^2\sqrt{3}}{4}\). Nên ta có \(AB.MI+MK.AC=BC.MJ+\frac{a^2\sqrt{3}}{2}\)hay \(MI+MK=MJ+\frac{a\sqrt{3}}{2}\)

Do đó \(\left(MI+MK-MJ\right)^2=\frac{3a^2}{4}\)

Suy ra \(MI^2+MJ^2+MK^2+2\left(MI.MK-MI.MJ-MJ.MK\right)=\frac{3a^2}{4}\)

Mà \(MI.MK-MJ.MI-MJ.MK=0\)(cmt) nên \(MI^2+MJ^2+MK^2=\frac{3a^2}{4}\)(không đổi)

Vậy \(MI^2+MJ^2+MK^2\)không đổi khi Q thay đổi trên cạnh BC (đpcm)

14 tháng 10 2017

chắc bạn xem bộ đó rồi

14 tháng 10 2017

ý bạn là j