K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2021

a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).

Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).

Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).

Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).

Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).

10 tháng 3 2017

\(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)

\(\Leftrightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{n}{2n-1}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{2\left(a_1+a_2+...+a_n\right)-\left(a^2_1+a^2_2+...+a_n^2\right)}\)

\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{1}{2-\left(a^2_1+a^2_2+...+a_n^2\right)}\)

Chứng minh rằng \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)

\(\Leftrightarrow2n-1\ge n\left[2-\left(a^2_1+a^2_2+...+a^2_n\right)\right]\)

\(\Leftrightarrow2n-1\ge2n-n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow-1\ge-n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow1\le n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow\dfrac{1}{n}\le a^2_1+a^2_2+...+a^2_n\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow VP=\dfrac{a^2_1}{1}+\dfrac{a^2_2}{1}+...+\dfrac{a^2_n}{1}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}=\dfrac{1}{n}\)

\(\Rightarrow\) đpcm

Vậy \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)

\(\Rightarrow\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\) ( đpcm )

10 tháng 3 2017

lp 7

30 tháng 12 2017

Đặt A = a1+a2+a3+...+an

B = a15 + a25 + a35+ ... + an5

Xét X = B - A = (a15 - a1) + (a25 - a2) + ... + (an5 - an)

ai5 - ai = ai(ai4 - 1) = ai (ai-1)(ai+1)(ai2+1) (i = 1;2;3;...;n)

ai (ai-1)(ai+1) chia hết cho 2;3 mà (2;3)=1 nên ai (ai-1)(ai+1) chia hết cho 6. Vậy X chia hết cho 6.

Nếu ai=5k => X chia hết 5.

Nếu ai = 5k\(\pm\)1 => (ai-1)(ai+1) chia hết 5 => X chia hết 5.

Nếu ai = 5k\(\pm\)2 => ai2 + 1 = (5k\(\pm\)2)2 + 1 = 25k2 \(\pm\) 20k + 5 => X chia hết 5.

Mà (6;5) =1 => X = B - A chia hết 30 mà A chia hết 30 => B chia hết 30 hay a15 + a25 + a35+ ... + an5 chia hết 30.

NV
15 tháng 1

Do \(a_1;a_2;...a_n\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}0\le a_1\le1\\0\le a_2\le1\\...\\0\le a_n\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a_1\left(1-a_1\right)\ge0\\a_2\left(1-a_2\right)\ge0\\...\\a_n\left(1-a_n\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a_1\ge a_1^2\\a_2\ge a_2^2\\...\\a_n\ge a_n^2\end{matrix}\right.\)

\(\Rightarrow a_1^2+a_2^2+...+a_n^2\le a_1+a_2+...+a_n\)

Do đó ta chỉ cần chứng minh:

\(\left(1+a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)

\(\Leftrightarrow1+2\left(a_1+a_2+...+a_n\right)+\left(a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)

\(\Leftrightarrow\left(a_1+a_2+...+a_n\right)^2-2\left(a_1+a_2+...+a_n\right)+1\ge0\)

\(\Leftrightarrow\left(a_1+a_2+...+a_n-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra tại \(\left(a_1,a_2,...,a_n\right)=\left(0,0,..,1\right)\) và các hoán vị