K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

thôi mk tự lm đc rồi:

(a^3- 3ab^2)^2=361

=a^6- 6a^4b^2+ 9a^2 b^4

(b^3-3a^2b)^2=9604

=b^6- 6a^2b^4+9a^4 b^2

    cộng 2 vế->(a^2+b^2)^3= 9604+361= 9965

mn check hộ mk nha

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 6 2021

Lời giải:

$1=a+b+3ab\leq (a+b)+3.\frac{(a+b)^2}{4}$

$\Rightarrow a+b\geq \frac{2}{3}$

$\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2}{9}$

\(p=\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{1-(a+b)}{a+b}=\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{1}{a+b}-1\)

\(\leq \sqrt{(1-a^2+1-b^2)(1+1)}+\frac{1}{\frac{2}{3}}-1=\sqrt{2(2-a^2-b^2)}+\frac{1}{2}\)

Mà \(2-a^2-b^2\leq 2-\frac{2}{9}=\frac{16}{9}\)

Do đó:

\(P\leq \sqrt{\frac{32}{9}}+\frac{1}{2}=\frac{3+8\sqrt{2}}{6}\) và đây chính là giá trị max.

 

AH
Akai Haruma
Giáo viên
1 tháng 6 2021

SKY WARS:

Đặt $a+b=t$ thì:

$1\leq t+\frac{3}{4}t^2$

$\Leftrightarrow 4\leq 4t+3t^2$

$\Leftrightarrow 3t^2+4t-4\geq 0$

$\Leftrightarrow (3t-2)(t+2)\geq 0$

Vì $t>0$ nên $3t-2\geq 0\Rightarrow t\geq \frac{2}{3}$

15 tháng 11 2016

Ta có:

\(2A+54\ge2\left(3ab+bc+ca\right)+3\left(a^2+b^2+c^2\right)\)

\(=\left(a+b+c\right)^2+2\left(a+b\right)^2+2c^2\ge0\)

\(\Rightarrow2A\ge-54\Rightarrow A\ge-27\)

Dấu = khi a=3;b=-3;c=0

24 tháng 7 2015

\(a^3-3ab^2=19\Rightarrow\left(a^3-3ab^2\right)^2=361\)

\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=361\left(1\right)\)

\(b^3-3a^2b=98\Rightarrow\left(b^3-3a^2b\right)^2=9604\)

\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=9604\left(2\right)\)

\(\text{Công 2 vế (1) và (2) ta được :}\)

\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=9956\)

\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=9956\)

\(\Leftrightarrow\left(a^2+b^2\right)^3=9956\)

\(\Leftrightarrow a^2+b^2=\sqrt[3]{9956}\)

18 tháng 11 2019

tu lam 

5 tháng 12 2021

Ta có: \(A=\left(a+b\right)\left(a^2-ab+b^2\right)+\dfrac{6}{a^2+b^2}+3ab\)

               \(=2\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}+ab\)

               \(=\left[\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}\right]+\dfrac{a^2+b^2}{2}+ab\)

               \(\ge2\sqrt{\dfrac{3}{2}\left(a^2+b^2\right).\dfrac{6}{a^2+b^2}}+\dfrac{\left(a+b\right)^2}{2}=2.3+\dfrac{2^2}{2}=8\)

Dấu "=" xảy ra ⇔ a=b=1

8 tháng 6 2021

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)

Theo đề bài:

\(a+b+3ab=1\)

\(\Leftrightarrow4\left(a+b\right)+12ab=4\)

\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)

\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)

\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)

\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)

\(\Leftrightarrow a+b\ge\frac{2}{3}\)

`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)

Áp dụng các kết quả trên, ta có:

\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)

\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)

Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)

\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)

Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)

Áp dụng bđt AM-GM ta có

\(P\ge\frac{4}{2+a^2+b^2+6ab}=\frac{4}{\left(a+b\right)^2+4ab+1}=\frac{2}{1+2ab}\)

Lại có \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

3 tháng 3 2021

Cho các số nguyên dương a,b thỏa mãn  a.b=2.(a-b). Tìm các số a,b thỏa mãn đẳng thức trên.