K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

\(A=\left(x^2-yz\right)\left(y^2-zx\right)\left(z^2-xy\right)=\sqrt{\left(x^2-yz\right)\left(y^2-zx\right)}.\sqrt{\left(y^2-zx\right)\left(z^2-xy\right)}.\sqrt{\left(z^2-xy\right)\left(x^2-yz\right)}\)Giả sử \(x^2\ge yz;y^2\ge zx;z^2\ge xy\)

Theo Cosi ta có : 

\(\sqrt{\left(x^2-yz\right)\left(y^2-zx\right)}\le\frac{x^2-yz+y^2-zx}{2}\)

\(\sqrt{\left(y^2-zx\right)\left(z^2-xy\right)}\le\frac{y^2-zx+z^2-xy}{2}\)

\(\sqrt{\left(z^2-xy\right)\left(x^2-yz\right)}\le\frac{z^2-xy+x^2-yz}{2}\)

Cộng theo vế ta được : 

\(A\le\frac{x^2-yz+y^2-zx+y^2-zx+z^2-xy+z^2-xy+x^2-yz}{2}=\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\)

\(=1-\left(xy+yz+zx\right)\le1-\left(x^2+y^2+z^2\right)=1-1=0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\) hoặc \(x=y=z=\frac{-1}{3}\) ( thỏa mãn giả sử ) 

Chúc bạn học tốt ~ 

PS : ko chắc :v 

12 tháng 2 2020

Em vừa giải bên AoPS:

29 tháng 12 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Rightarrow\left\{{}\begin{matrix}1+\dfrac{x}{y}+\dfrac{x}{z}=0\\\dfrac{y}{x}+1+\dfrac{y}{z}=0\\\dfrac{z}{x}+\dfrac{z}{y}+1=0\end{matrix}\right.\\ \Rightarrow\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{z}{y}=-3\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Rightarrow\dfrac{yz+xz+xy}{xyz}=0\\ \Rightarrow yz+xz+xy=0\)

\(\Rightarrow\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\left(xy+xz+yz\right)=0\\ \Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}+\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{z}{y}=0\\ \Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

13 tháng 12 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{-1}{z}\)

\(\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3=\left(\dfrac{-1}{z}\right)^3\)

\(\Leftrightarrow\dfrac{1}{x^3}+3\dfrac{1}{x^2}\dfrac{1}{y}+3\dfrac{1}{x}\dfrac{1}{y^2}+\dfrac{1}{y^3}=\dfrac{-1}{z^3}\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3.\dfrac{1}{x}\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3\dfrac{1}{x}\dfrac{1}{y}\dfrac{-1}{z}\)

\(\Leftrightarrow\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)xyz=3\dfrac{1}{x}\dfrac{1}{y}\dfrac{1}{z}.xyz\)

\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)

\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)

13 tháng 12 2020

cm bn

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)

\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)

12 tháng 12 2020

 Nguyễn Việt Lâm anh oiiiiiiiiiii

8 tháng 8 2017

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

7 tháng 12 2019

9 tháng 10 2017

5 tháng 6 2016

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:
Đặt $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=t$

$\Rightarrow a=xt; b=yt; c=zt$. Ta có:

$a+b+c=xt+yt+zt=t(x+y+z)=t$

$a^2+b^2+c^2=t^2(x^2+y^2+z^2)=t^2$

$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{t^2-t^2}{2}=0$

Ta có đpcm.