K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Gọi M là giao điểm của AE và CF

ADFE là hình bình hành nên ^ADF = ^AEF (hai góc đối)

Suy ra ^BDF = ^FEC 

Xét \(\Delta\)BDF và \(\Delta\)FEC có:

       BD = FE (cùng bằng AD)

       ^BDF = ^FEC (cmt) 

      DF = EC ( cùng bằng AE)

Do đó \(\Delta\)BDF = \(\Delta\)FEC (c.g.c) suy ra BF = CF (1) và ^BFD = ^FCE

Mặt khác ^AMC = ^DFC (do DF // AE)

^AMC = ^MEC + ^FCE = 600 + ^FCE và ^DFC = ^BFC + ^BFD

Do đó ^BFC = 600 (2)

Từ (1) và 2) suy ra \(\Delta\)FBC đều (đpcm)

11 tháng 11 2015

Tự ve hình nhé:

Góc CBK =DBK =60 => CBA=KBD mà BK=BC;BD=BA => Tam giác BKD =BCA (c-g-c) 

=>DK =AC = AE.(1)

Tương tự  Tam giác CKE =CBA => KE =AB =AD (2)

1;2 => AEKD là HBH ( có các cạnh đói = nhau)

b) DK =AC = CE

Hôm qua bận nên bạn thôn cảm nhé.

1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

2: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng vơi ΔABC

3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF/HB=HE/HC

Xét ΔHFE và ΔHBC có

HF/HB=HE/HC

góc FHE=góc BHC

=>ΔFHE đồng dạng với ΔBHC