K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

Tương tự,cộng theo vế và rút gọn =>đpcm

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt CÔ si

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

.............

8 tháng 8 2021

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c

8 tháng 8 2021

hình như sai đề rồi ạ, đề của em là a2 + b2 - ca - cb = 0 ạ

Ta có 1+c2=ab+bc+ca+c2=(a+c)(b+c)

Tương tự 1+a2=(a+b)(a+c)

                 1+b2=(a+b)(b+c)

Suy ra \(\frac{a-b}{1+c^2}=\frac{a-b}{\left(a+c\right)\left(b+c\right)}=\frac{1}{c+b}-\frac{1}{c+a}\)

            \(\frac{b-c}{1+a^2}=\frac{b-c}{\left(a+b\right)\left(a+c\right)}=\frac{1}{a+c}-\frac{1}{a+b}\)

              \(\frac{c-a}{1+b^2}=\frac{c-a}{\left(a+b\right)\left(b+c\right)}=\frac{1}{a+b}-\frac{1}{b+c}\)

\(\Rightarrow\frac{a-b}{1+c^2}+\frac{b-c}{1+a^2}+\frac{c-a}{1+b^2}=\frac{1}{c+b}-\frac{1}{c+a}+\frac{1}{a+c}-\frac{1}{a+b}+\frac{1}{a+b}-\frac{1}{b+c}=0\)

24 tháng 11 2019

Bài 1:

Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)

Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.

Bài 2: 2 bài đều dùng Svac cả!

24 tháng 11 2019

Bài 2a làm bên h rồi nên chụp lại thôi!

 (cần thì ib t gửi link cho)

11 tháng 8 2020

Với điều kiện \(ab+bc+ca+abc=4\) thì \(VP-VT=\frac{bc^2\left(a-b\right)^2+ca^2\left(b-c\right)^2+ab^2\left(c-a\right)^2}{\left(a^2+2b\right)\left(b^2+2c\right)\left(c^2+2a\right)}\ge0\)

12 tháng 8 2020

Cauchy ngược dấu + Svacxo + gt coi 

NV
13 tháng 5 2019

\(P=\left(b+c+d\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=1+\frac{b}{c}+\frac{b}{d}+\frac{c}{b}+1+\frac{c}{d}+\frac{d}{b}+\frac{d}{c}+1\)

\(=3+\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}\)

Mặt khác do \(b\le c\le d\Rightarrow\left(d-c\right)\left(c-b\right)\ge0\)

\(\Leftrightarrow cd-bd-c^2+bc\ge0\Leftrightarrow bc+cd\ge c^2+bd\)

\(\Leftrightarrow\frac{bc+cd}{cd}\ge\frac{c^2+bd}{cd}\Leftrightarrow\frac{b}{d}+1\ge\frac{c}{d}+\frac{b}{c}\)

\(\frac{bc+cd}{bc}\ge\frac{c^2+bd}{bc}\Leftrightarrow\frac{d}{b}+1\ge\frac{c}{b}+\frac{d}{c}\)

\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}+2\ge\frac{b}{c}+\frac{c}{d}+\frac{c}{b}+\frac{d}{c}\)

\(\Leftrightarrow2\left(\frac{b}{d}+\frac{d}{b}\right)+2\ge\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}=P\)

\(a\le b\le d\le2a\Rightarrow\left\{{}\begin{matrix}\frac{1}{2}\le\frac{b}{d}\le1\\1\le\frac{d}{b}\le2\end{matrix}\right.\)

\(\Rightarrow\left(\frac{b}{d}-1\right)\left(\frac{d}{b}-2\right)\ge0\Leftrightarrow1-2\frac{b}{d}-\frac{d}{b}+2\ge0\)

\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}\le3-\frac{b}{d}\le3-\frac{1}{2}=\frac{5}{2}\)

\(\Rightarrow P\le2.\frac{5}{2}+2=7\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=c=a\\d=2a\end{matrix}\right.\)

3 tháng 6 2019

Cảm ơn ạ

19 tháng 6 2019

Có: \(VT=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(c+a\right)}{b+c}+\frac{\left(c+b\right)\left(a+b\right)}{a+c}\) (thay a+ b+c=1 vào r phân tích thành nhân tử)

Lại có: Theo Cô si \(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(c+a\right)}{b+c}\ge2\left(c+a\right)\)

Tương tự với hai BĐT còn lại và cộng theo vế được: \(2VT\ge4\Leftrightarrow VT\ge2^{\left(đpcm\right)}\)

"=" <=> a = b = c = 1/3

NV
19 tháng 6 2019

Đặt \(P=\frac{ab+c}{a+b}+\frac{bc+a}{b+c}+\frac{ac+b}{a+c}=\frac{ab+c\left(a+b+c\right)}{a+b}+\frac{bc+a\left(a+b+c\right)}{b+c}+\frac{ac+b\left(a+b+c\right)}{a+c}\)

\(=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\)

Ta có:

\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\left(a+c\right)\)

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(b+c\right)\)

Cộng vế với vế

\(2P\ge4\left(a+b+c\right)=4\Rightarrow P\ge2\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

NV
19 tháng 6 2019

Thực hiện phép biến đổi tương đương:

\(\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(a^2+b^2+2\right)\ge2\left(1+a^2+b^2+a^2b^2\right)\)

\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab\ge2+2a^2+2b^2+2a^2b^2\)

\(\Leftrightarrow a^3b-2a^2b^2+ab^3-a^2+2ab-b^2\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2-\left(a-b\right)^2\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng do \(ab>1\))

Dấu "=" xảy ra khi \(a=b\)