K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2020

Gọi các đường thẳng đã cho là \(d_1;d_2;d_3;.....;d_{1992}\) và \(A_{ij}\) là giao điểm của \(d_i;d_j\) với \(i,j\in\left[1;1992\right]\)

Xét đường thẳng \(d_n\) bất kỳ trong 1992 đường thẳng trên 

Do không có 3 đường nào đồng quy nên \(A_{ij}\notin d_n\)

Giả sử điểm \(A_{ij}\) gần đường thẳng \(d_n\) nhất

Ta đi chứng minh tam giác \(A_{ij}A_{ni}A_{nj}\) là tam giác xanh 

Giả sử tam giác này bị một đường thẳng \(d_m\) nào đó cắt thì \(d_m\) cắt ít nhất một trong 2 đoạn \(A_{ij}A_{ni};A_{ij}A_{nj}\)

Giả sử \(d_m\) cắt \(A_{ij}A_{ni}\) tại điểm \(A_{mi}\) thì \(A_{mi}\) gần \(d_n\) nhất ( trái giả thiết )

Vậy mỗi đường thẳng \(d_n\) bất kỳ thì luôn tồn tại một tam giác xanh có cạnh nằm trên \(d_n\)

Khi đó số tam giác xanh không ít hơn \(1992:3=664\) 

30 tháng 1 2017

Giải bài dưới.

Trong 2010 điểm không thẳng hàng này luôn tôn tại 2 điểm A,B sao cho 2008 điểm còn lại cùng thuộc một nửa mặt phẳng có bờ là đường thẳng AB.

Ta lần lược nối 2008 điểm còn lại với 2 điểm A, B thì sẽ tạo được 2008 góc: AC1 B, AC2 B,...,AC2008 B.

Vì số góc là hữu hạn nên luôn tồn tại góc AC​ k​ B có số đo lớn nhất. Khi đó đường tròn đi qua 3 điểm đó là đường tròn cần tìm

27 tháng 1 2017

Mình xin đề xuất bài toán tổng quát như sau (à với lại đề bên trên có một lỗi nhỏ xíu):

Cho tam giác \(ABC\) bất kì (ko cần vuông nữa). Đường tròn nội tiếp tâm \(I\)tiếp xúc \(AB,AC\) tại \(P,Q\). Gọi \(F\) là trung điểm \(AC\), và gọi \(d\) là đường trung bình qua \(F\) của tam giác \(ABC\).

Chứng minh: \(d,PQ,BI\) và đường tròn ngoại tiếp tam giác \(QIC\) đồng quy tại một điểm.

-----

P/S: Trước mắt mình xin nói sơ hướng giải quyết, chắc ngày mai nếu bạn vẫn ko làm được thì mình hãy đăng lời giải cụ thể.

Bước 1: \(BI\) cắt đường tròn \(\left(QIC\right)\) tại \(L\). Suy ra \(\widehat{BLC}\) vuông.

Bước 2: Gọi \(M\) là trung điểm \(BC\). Hãy chứng minh \(LM\) song song với \(BC\). Suy ra \(L\in d\).

Bước 3: Hãy chứng minh \(\widehat{AQP}=\widehat{LQC}\). Lưu ý rằng \(\widehat{LQC}=\widehat{LIC}\) là góc ngoài của tam giác \(BIC\), còn \(\widehat{AQP}=\frac{180^o-\widehat{A}}{2}\).

Bước 4: Suy ra \(L\in PQ\) và ta có điều phải chứng minh.

(Mình xin lỗi vì ko biết các điểm \(E,F\) BAN ĐẦU có ý nghĩa gì. Nếu được bạn xem lại đề giúp.)

21 tháng 4 2018

Tương tự HS tự làm

30 tháng 10 2023

1: ΔNMQ vuông tại N

=>\(NM^2+NQ^2=QM^2\)

=>\(NM^2=5^2-3^2=16\)

=>NM=4(cm)

Xét ΔNMQ vuông tại N có

\(sinM=\dfrac{NQ}{MQ}=\dfrac{3}{5}\)

=>\(\widehat{NMQ}\simeq37^0\)

ΔNMQ vuông tại N

=>\(\widehat{NMQ}+\widehat{NQM}=90^0\)

=>\(\widehat{NQM}=90^0-37^0=53^0\)

Xét ΔQMD vuông tại Q có QN là đường cao

nên \(QN^2=NM\cdot ND\)

=>\(ND\cdot4=3^2=9\)

=>ND=2,25(cm)

MQ=MN+ND

=4+2,25

=6,25(cm)

ΔMQD vuông tại Q

=>\(MQ^2+QD^2=MD^2\)

=>\(QD^2=6,25^2-5^2=14,0625\)

=>QD=3,75(cm)

3: ΔQMN vuông tại N có NE là đường cao

nên \(QE\cdot QM=QN^2\left(1\right)\)

Xét ΔQND vuông tại N có NF là đường cao

nên \(QF\cdot QD=QN^2\left(2\right)\)

Từ (1) và (2) suy ra \(QE\cdot QM=QF\cdot QD\)

b:

Xét ΔNQD vuông tại N có NF là đường cao

nên \(NF\cdot QD=NQ\cdot ND;DF\cdot FQ=NF^2\)

=>\(NF=\dfrac{3\cdot2.25}{3.75}=1,8\left(cm\right)\)

Xét ΔMNQ vuông tại N có NE là đường cao

nên \(NE^2=EM\cdot EQ;NE\cdot MQ=NQ\cdot NM\)

=>\(NE\cdot5=3\cdot4=12\)

=>NE=2,4(cm)

 \(ME\cdot EQ+DF\cdot FQ\)

\(=NE^2+NF^2\)

\(=2,4^2+1,8^2=9\)

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.CMR tồn...
Đọc tiếp

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.

Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)

2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.

CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín

3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.

CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại

4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

5. Cho 7 số nguyên dương khác nhau không vượt quá 1706. 

CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a

1
20 tháng 4 2018

 Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng