K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Ta chứng minh bđt: \(\frac{x}{\sqrt{x-1}}\ge2\)

Thật vậy ta có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\RightarrowĐPCM\)

Về bài toán, ta có:

\(\frac{a^2}{b-1}+\frac{b^2}{b-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\ge8\)

P/s: Ko chắc

15 tháng 12 2017

\(\frac{a^2}{a-1}+\frac{^2b}{b-1}\)\(min\)

\(\Rightarrow\)a-1 min,b-1 min

mà a,b>1\(\Rightarrow\)a-1,b-1>0\(\Rightarrow\)a-1,b-1=1\(\Rightarrow\)a,b=2

vậy

27 tháng 3 2022

Ta có \(a\sqrt{2-b^2}+b\sqrt{2-a^2}\le\dfrac{a^2+2-b^2}{2}+\dfrac{b^2-2-a^2}{2}=2\) 

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a=\sqrt{2-b^2}\\b=\sqrt{2-a^2}\end{matrix}\right.\Leftrightarrow a^2+b^2=2\)

Ta có \(P=\dfrac{1}{a}+\dfrac{1}{b}-a-b\ge\dfrac{4}{a+b}-\left(a+b\right)\) (BĐT Schwarz) 

\(\dfrac{4}{a+b}+\left(a+b\right)-2\left(a+b\right)\ge2\sqrt{\dfrac{4}{a+b}.\left(a+b\right)}-2\left(a+b\right)\)

= 4 - 2a - 2b 

Lại có 2a \(\le a^2+1\)

<=> -2a \(\ge-a^2-1\)

Tương tự : -2b \(\ge-b^2-1\)

Khi đó P \(\ge4-2a-2b\ge4-a^2-1-b^2-1=2-\left(a^2+b^2\right)=0\)

Dấu "=" xảy ra <=> a = b = 1 

27 tháng 3 2022

Bổ sung : a,b dương 

AH
Akai Haruma
Giáo viên
17 tháng 4 2021

Lời giải:

Xét:

$\frac{a}{a^2+1}-\left(\frac{16}{25}-\frac{3}{25}a\right)=\frac{(a-2)^2(3a-4)}{25(a^2+1)}\geq 0$ với mọi $a\geq \frac{4}{3}$

$\Rightarrow \frac{a}{a^2+1}\geq \frac{16}{25}-\frac{3}{25}a$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế, suy ra:

$A\geq \frac{48}{25}-\frac{3}{25}(a+b+c)=\frac{6}{5}$

Vậy $A_{\min}=\frac{6}{5}$.

Giá trị này đạt tại $a=b=c=2$

 

có cách nào không gượng ép như thế này không ạ

kiểu như phân tích chọn điểm rơi để tìm cách thêm bớt ấy ạ

6 tháng 10 2023

Áp dụng BĐT :

\(\dfrac{a^{^2}}{x}+\dfrac{b^{^2}}{y}\ge\dfrac{\left(a+b\right)^2}{\left(x+y\right)}\) (Bạn tự chứng minh nhé)

\(F=\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}\ge\dfrac{\left(a+b\right)^2}{a+1+b+1}=\dfrac{\left(a+b\right)^2}{a+b+2}\)

\(\Rightarrow F=\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}\ge\dfrac{2^2}{2+2}=1\)

Vậy \(Min\left(F\right)=1\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:
$P=\frac{18}{a^2+b^2}+\frac{10}{2ab}\geq \frac{(\sqrt{18}+\sqrt{10})^2}{a^2+b^2+2ab}$

$=\frac{(\sqrt{18}+\sqrt{10})^2}{(a+b)^2}=(\sqrt{18}+\sqrt{10})^2=28+12\sqrt{5}$

Vậy $P_{\min}=28+12\sqrt{5}$

24 tháng 11 2021

\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)

24 tháng 11 2021

\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

NV
20 tháng 7 2021

Nếu mẫu là bình phương, tức \(A=\dfrac{a^4}{\left(b-1\right)^2}+\dfrac{b^4}{\left(a-1\right)^2}\) thì vẫn làm tương tự:

Ta có:

\(\dfrac{a^4}{\left(b-1\right)^2}+16\left(b-1\right)+16\left(b-1\right)+16\ge4\sqrt[4]{\dfrac{a^4.16^3.\left(b-1\right)^2}{\left(b-1\right)^2}}=32a\)

\(\dfrac{b^4}{\left(a-1\right)^2}+16\left(a-1\right)+16\left(a-1\right)+16\ge32b\)

Cộng vế:

\(A+32\left(a+b\right)-32\ge32\left(a+b\right)\)

\(\Rightarrow A\ge32\)

NV
20 tháng 7 2021

Ta có:

\(\dfrac{a^4}{\left(b-1\right)^3}+16\left(b-1\right)+16\left(b-1\right)+16\left(b-1\right)\ge32a\)

\(\dfrac{b^4}{\left(a-1\right)^3}+16\left(a-1\right)+16\left(a-1\right)+16\left(a-1\right)\ge32b\)

Cộng vế:

\(A+48\left(a+b\right)-96\ge32\left(a+b\right)\)

\(\Leftrightarrow A\ge96-16\left(a+b\right)\ge96-16.4=32\)

\(A_{min}=32\) khi \(a=b=2\)

NV
14 tháng 1

Đây là bài sử dụng Cô-si ngược dấu đặc trưng:

\(\dfrac{1}{a^2+1}=\dfrac{a^2+1-a^2}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)

Tương tự: \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2}\)

\(\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)

Cộng vế:

\(P\ge3-\dfrac{a+b+c}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)