K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

Tìm 2 số a,b thôi

25 tháng 3 2020

Có: a; b là hai số tự nhiên.

Không mất tính tổng quát: g/s: a\(\le\)b

Ta có: a + b = 3 

TH1: a = 0 ; b = 3 => \(a^4+b^4=0+3^4=81\ne17\)loại 

TH2: a = 1; b = 2 => \(a^4+b^4=1^4+2^4=17\)tm 

Vậy a = 1; b = 2 hoặc a = 2; b = 1 

26 tháng 3 2019

\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Rightarrow ab+bc+ac=-\frac{2009}{2}\)

\(\left(ab+bc+ac\right)^2=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+c+b\right)=a^2b^2+a^2c^2+b^2c^2\)\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{2009^2}{4}\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

\(\Rightarrow2009^2=a^4+b^4+c^4+\frac{2009^2}{4}\cdot2\)

\(\Rightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)

24 tháng 5 2020

Ta có \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)

\(a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2=\frac{2009^2}{4}\)

\(A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)

11 tháng 2 2022

anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất 

a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)

29 tháng 6 2017

Ta có:

\(\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\left(a+b+c+d\right).\frac{16}{\left(a+b+c+d\right)}=16\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\)

Dấu = xảy ra khi \(a=b=c=d=1\)

10 tháng 12 2019

\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)

=> \(0\le a^2;b^4;c^6;d^8\le1\)

=> \(-1\le a;b;c;d\le1\)

=> \(a^{2016}\le a^2\)\(b^{2017}\le b^4\)\(c^{2018}\le c^6\)\(d^8\le d^{2019}\)

=> \(a^{2016}+b^{2017}+c^{2018}+d^{2019}\le a^2+b^4+c^6+d^8\)

Do đó: \(a^{2016}+b^{2017}+c^{2018}+d^{2019}=a^2+b^4+c^6+d^8=1\)

<=> \(a^{2016}=a^2;b^{2017}=b^4;c^{2018}=c^6;d^{2019}=d^8;a^2+b^4+c^6+d^8=1\)

<=> \(\orbr{\begin{cases}a=0\\a=\pm1\end{cases}}\); ​\(\orbr{\begin{cases}b=0\\b=1\end{cases}}\)\(\orbr{\begin{cases}c=0\\c=\pm1\end{cases}}\)\(\orbr{\begin{cases}d=0\\d=1\end{cases}}\)\(a^2+b^4+c^6+d^8=1\)

<=>  \(a=b=c=0;d=1\)hoặc \(a=b=d;c=\pm1\) hoặc \(a=c=d=0;b=1\)hoặc \(b=c=d=0;a=\pm1\).

10 tháng 12 2019

Tại sao \(0\le a^2;b^4;c^6;d^8\le1\) Lại suy ra \(-1\le a;b;c;d\le1\)????????????????????????

2 tháng 11 2017

Áp dụng bđt bu nhi a ta có 

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(-2-c\right)^2\le2\left(2-c^2\right)\)

=> \(c^2+4c+4\le4-2c^2\)

=> \(3c^2+4c\le0\Rightarrow c\left(3c+4\right)\le0\Rightarrow-\frac{4}{3}\le c\le0\)