K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

 \(BDT\Leftrightarrow a^2+b^2+c^2+2abc+1-2\left(ab+bc+ca\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(c-1\right)^2+2c\left(a-1\right)\left(b-1\right)\ge0\)

Từ đây ta thấy trong 3 số a,b,c sẽ có 2 số hoặc cùng \(\ge1\) hoặc cùng \(\le1\).giả sử 2 số đó là a và b suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)

Vậy BĐT đầu luôn đúng

14 tháng 1 2017

Thích Dirichlet thì chơi Dirichlet

Theo nguyên lý Dirichlet thì trong ba số (a - 1); (b - 1); (c - 1) luôn tồn tại ít nhất 2 số cùng dấu.

Không mất tính tổng quát ta giả sử hai số đó là (a - 1) và (b - 1).

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow2abc\ge2\left(ac+bc-c\right)\)

Giờ ta cần chứng minh 

\(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

 \(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\)

 Dấu = xảy ra khi a = b = c = 1

Ta viết lại bất đẳng thức cần chứng mình là:

\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)

Xét: \(f\left(a\right)=a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\)

Ta thấy nếu \(bc-b-c\ge0\)khi đó ta luôn có \(f\left(a\right)\ge0\)hay:

\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)

Bây giờ xét trường hợp sau: \(bc-b-c\le0\)

Khi đó ta có:\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\)

Mà số hạng từ bậc 2 là số dương để \(f\left(a\right)\ge0\)thì ta phải chỉ ra được:

\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\le0\)

Hay \(bc\left(b-2\right)\left(c-2\right)-1\le0\)

Để ý \(bc-b-c\le0\)ta được \(\left(b-1\right)\left(c-1\right)\le1\)lúc này khả năng xảy ra các trường hợp sau:

- Cả \(\left(b-1\right);\left(c-1\right)\)cùng nhỏ hơn 1 hay cả b,c nhỏ hơn 2 và theo bất đẳng thức Cô si ta được:

\(b\left(2-b\right)\le\frac{\left(b+2-b\right)^2}{4}=1;c\left(2-c\right)\le\frac{\left(c+2-c\right)^2}{4}=1\)

\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le1\)nên ta có \(bc\left(b-2\right)\left(c-2\right)-1\le0\)

Trong 2 số \(\left(b-1\right);\left(c-1\right)\)có một số lớn hơn 1 và một số nhỏ hơn 1 khi đó trong b,c có số lớn hơn hoặc nhỏ hơn 2 

\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le0\Leftrightarrow bc\left(b-2\right)\left(c-2\right)-1\le0\)

Vậy cả 2 khả năng đều cho \(\Delta_a\le0\)nên bất đẳng thức đã được chứng minh. Bài toán đã được chứng mình xong.

26 tháng 8 2019

n là tham số hay sao ah? 

26 tháng 8 2019

Anh quên mất  \(n\ge0\)

9 tháng 9 2018

TA CÓ:

\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)

\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)

ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)

\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)

TA CẦN C/M:

\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)        \(\left(=2abc\left(a+b+c\right)\right)\)

ÁP DỤNG BĐT BUNHIA TA CÓ:

\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)

VẬY CẦN C/M:

\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)

XÉT HIỆU:

\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)

\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)

VÌ:

\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)

\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)

\(\Rightarrow DPCM\)

Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b

26 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\)

Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)

6 tháng 5 2021

Dirichlet à:))?

Trong 3 số dương a,b,c tồn tại ít nhất 2 số cùng nhỏ hơn hoặc không nhỏ hơn 1

G/s 2 số đó là a và b

Khi đó: \(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\Leftrightarrow2abc\ge2ca+2bc-2c\)

\(\Rightarrow a^2+b^2+c^2+2abc+1\ge a^2+b^2+c^2+2ca+2bc-2c+1\)

Mà \(\left(a^2+b^2+c^2+2ca+2bc-2c+1\right)-2\left(ab+bc+ca\right)\)

\(=\left(a^2-2ab+b^2\right)+\left(c^2-2c+1\right)=\left(a-b\right)^2+\left(c-1\right)^2\ge0\left(\forall a,b,c\right)\)

\(\Rightarrow a^2+b^2+c^2+2ca+2bc-2c+1\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Dấu "=" xảy ra khi: a = b = c = 1

6 tháng 5 2021

Theo nguyên lý Dirichlet, ta thấy rằng trong ba số a,b,c sẽ có hai số hoặc cùng ≥1 hoặc cùng ≤1. Giả sử hai số đó là a,b khi đó:
(a−1)(b−1)≥0.
Từ đây, bằng cách sử dụng hằng đẳng thức:
a2+b2+c2+2abc+1−2(ab+bc+ca)=(a−b)2+(c−1)2+2c(a−1)(b−1)≥0
Ta thu được ngay bất đẳng thức (1), phép chứng minh hoàn tất.

Search mạng!!

8 tháng 7 2019

Ta có \(\frac{a^3+b^3+c^3}{2abc}=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2bc}\)

Áp dụng BĐT cosi schwarz:

\(VT\ge\frac{\left(3a+3b+3c\right)^2}{2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ac\right)}=\frac{9}{2}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

19 tháng 3 2019

Ta có : \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}=\sqrt{ab+bc+ac+a^2}+\sqrt{ab+bc+ac+b^2}+\sqrt{ab+bc+ac+c^2}=\sqrt{\left(b+a\right)\left(a+c\right)}+\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(c+b\right)}\)

\(\le\frac{a+c+b+c}{2}+\frac{a+b+b+c}{2}+\frac{a+c+a+b}{2}=2\left(a+b+c\right)\)

( áp dụng BĐT Cô - si cho các số a ; b ; c dương )

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab+bc+ac=1\\a+c=b+c=a+b\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy ...