K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

đề đây à \(\int^{x^2+y^2+xy=37}_{\int^{x^2+z^2+xz=38}_{y^2+z^2+yz=19}}\)
 

31 tháng 3 2016

Giúp tớ đi

23 tháng 7 2016

\(\hept{\begin{cases}x^2+y^2+xy=37\left(1\right)\\x^2+z^2+xz=28\left(2\right)\\y^2+z^2+yz=19\left(3\right)\end{cases}}\)

trừ pt(1) cho pt(2) ta có \(y^2+xy-z^2-xz=9\)<=> \(\left(y-z\right)\left(y+z\right)+x\left(y-z\right)=9\)

                                                                                   <=> \(\left(y-z\right)\left(x+y+z\right)=9\)(4)

trừ pt(2) cho pt(3) ta có \(x^2+xz-y^2-yz=9\)

                                    <=>\(\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=9\)

                                 <=> \(\left(x-y\right)\left(x+y+z\right)=9\)(5)

từ (4) và (5) ==>\(\left(y-z\right)\left(x+y+z\right)=\left(x-y\right)\left(x+y+z\right)\)

mà x+y+z khác 0 ==> \(y-z=x-y\)

                     ==> x+z=2y <=> x+y+z=3y

mà (x-y)(x+y+z)=9 <=> \(\left(x-y\right)3y=9\)

                              <=> \(\left(x-y\right)y=3\) 

                        <=> \(xy-y^2=3\)

                            <=>\(xy=y^2+3\)

                        <=> \(x=y+\frac{3}{y}\)(6)

thay (6) vào pt (1) ta có \(\left(y+\frac{3}{y}\right)^2+y^2+\left(y+\frac{3}{y}\right)y=37\)

                        <=>\(3y^4-28y^2+9=0\)

 đặt \(y^2=t\left(t\ge0\right)\) thì pt trở thành \(3t^2-28t+9=0\)

                           <=>\(\left(3t-1\right)\left(t-9\right)=0\) 

                            <=> \(\orbr{\begin{cases}t=\frac{1}{3}\\t=9\end{cases}}\)(TMĐK)

ĐẾN ĐÂY CẬU TỰ GIẢI NỐT TÌM x;y;z nhé  ( bài hay quá )

1 tháng 2 2018

Lấy (1) + (3) vế theo vế, ta được:

\(x^2+2y^2+z^2+xy+yz=56=2\left(x^2+z^2+zx\right)\)

\(\Leftrightarrow x^2+z^2+2xz-y\left(x+z\right)-2y^2=0\)

\(\Leftrightarrow\left(x+z+y\right)\left(x+z-2y\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=-z\\x+y=2y\end{cases}}\)

Với \(x+z=2y\Leftrightarrow x=2y-z\), ta có:

\(\hept{\begin{cases}\left(2y-z\right)^2+z^2+z\left(2y-z\right)=28\\y^2+z^2+yz=19\end{cases}}\)

\(\hept{\begin{cases}4y^2-2yz+z^2=28\\y^2+z^2+yz=19\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}x\\y=\frac{-z}{8}\end{cases}}}\)

Tùy vào điều kiện bài ra để lấy nghiệm. Nếu cả 3 ẩn đều dương thì hệ phương trình có nghiệm:

(x; y; z) = (4; 3; 2)

18 tháng 10 2020

sai lớp :>>>

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

25 tháng 5 2021

PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Nhận thấy VT\(\ge\)0 với mọi x,y,z

Dấu = xảy ra <=> x=y=z

Thay x=y=z vào pt (2) ta được:

\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)

\(\Rightarrow x=y=z=3\)

Vậy (x;y;z)=(3;3;3)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).

Dễ thấy $x+y+z\neq 0$. Khi đó ta có:

\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)

\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)

Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)

Thay vào PT thứ nhất của $(*)$ suy ra:

\(2k(2k+3k+4k)=2\)

\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)

Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)

Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)