K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được : 

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) (đpcm)

17 tháng 8 2016

Áp dụng bđt Cauchy, ta có : \(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\)

tương tự : \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)

\(\Rightarrow2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge2\left(a+b+c\right)\)

 \(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)(đpcm)

17 tháng 8 2016

cái này lớp 10 mà

 

Bài 2 :

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)

( Do \(a+b+c=abc\) )

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)

P/s : Cho hỏi bài 1 có a,b,c > 0 không ?

Khuyến mãi thêm bài 1 :))

Áp dụng BĐT AM-GM ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)

Tương tự ta có :

\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)

Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

21 tháng 4 2019

a)Chứng minh BĐT phụ sau: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) (m,n>0)  (*)

\(\Leftrightarrow\frac{p^2n+q^2m}{mn}-\frac{p^2+2pq+q^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{p^2n\left(m+n\right)+q^2m\left(m+n\right)-p^2mn-2pqmn-q^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(pq\right)^2-2.qp.mn+\left(qm\right)^2}{mn\left(m+n\right)}\ge0\Leftrightarrow\frac{\left(pn-qm\right)^2}{mn\left(m+n\right)}\ge0\) (đúng)

Dấu "=" xảy ra khi pn = qm.

Áp dụng BĐT (*) 2 lần,ta có: \(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

21 tháng 4 2019

b) Có cách này như mình không chắc:

Chuẩn hóa abc = 1.Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

Ta cần chứng minh: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\)

Ta có: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}\ge2.\frac{z}{x}\) (Cô si)

\(\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge2.\frac{x}{y}\)

\(\frac{y^2}{x^2}+\frac{x^2}{z^2}\ge2.\frac{y}{z}\)

Cộng theo vế 3 BĐT trên,ta được:\(2\left(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\right)\ge2\left(\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\right)\)

Suy ra \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\) (đpcm)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y^2}{x^2}=\frac{z^2}{y^2}\\\frac{z^2}{y^2}=\frac{x^2}{z^2}\end{cases}\Leftrightarrow}\frac{y^2}{x^2}=\frac{z^2}{y^2}=\frac{x^2}{z^2}\Leftrightarrow\frac{y}{x}=\frac{z}{y}=\frac{x}{z}\Leftrightarrow a=b=c\)

7 tháng 12 2018

Áp dụng bất dẳng thức Cauchy - Schwartz dạng engel, ta có: 

 \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi: \(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}\) 

30 tháng 3 2020

zzzzzz

NV
27 tháng 4 2019

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

19 tháng 8 2016

Ta có a2/(b+c) + (b+c)/4 >= a

b2/(c+a) + (c+a)/4 >= b

c2/(a+b) + (a+b)/4 >= c

Từ đó ta có a2/(b+c) + b2/(c+a) + c2/(a+b) >= (a+b+c)/2

18 tháng 8 2016

Đặt x = a+b , y = b+c , z = c+a

=> \(\begin{cases}a=\frac{x+z-y}{2}\\b=\frac{x+y-z}{2}\\c=\frac{y+z-x}{2}\end{cases}\)

Thay vào tính : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{x+z-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\right]-\frac{3}{2}\) 

\(\ge\frac{1}{2}\left(2+2+2\right)-\frac{3}{2}=\frac{3}{2}\)

19 tháng 8 2016

ha ha ha ha ha ha ha