K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

\(8(a^4+b^4)\ge\left(a+b\right)^4\)

\(\Leftrightarrow\)\(8a^4+8b^4\ge a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(\Leftrightarrow\) \(7a^4+7b^4\ge4a^3b+6a^2b^2+4ab^3\)

\(\Leftrightarrow\)\(4a^3\left(a-b\right)+4b^3\left(b-a\right)+3\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow\) \(4\left(a^3-b^3\right)\left(a-b\right)+3\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow\) \(4\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) với mọi a,b

\(\Rightarrowđpcm\)

3 tháng 11 2018

Câu a : \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow\left(a-b\right)^2\ge0\)

16 tháng 11 2022

a: =>2a^2+2b^2>=a^2+2ab+b^2

=>a^2-2ab+b^2>=0

=>(a-b)^2>=0(luôn đúng)

c: =>3a^2+3b^2+3c^2>=a^2+b^2+c^2+2ab+2bc+2ac

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

1: =>4a^3+4b^3-a^3-3a^2b-3ab^2-b^3>=0

=>a^3-a^2b-ab^2+b^3>=0

=>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

=>(a+b)(a-b)^2>=0(luôn đúng)

2: \(a^4+b^4=\dfrac{a^4}{1}+\dfrac{b^4}{1}>=\dfrac{\left(a^2+b^2\right)^2}{1}=\dfrac{1}{2}\left(\dfrac{a^2}{1}+\dfrac{b^2}{1}\right)^2\)

=>\(a^4+b^4>=\dfrac{1}{2}\left(\dfrac{\left(a+b\right)^2}{2}\right)^2=\dfrac{\left(a+b\right)^4}{8}\)

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)

\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)

\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)

Cộng theo vế và rút gọn:

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

25 tháng 12 2018

AM-GM là gì z bn

16 tháng 4 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wow, chắc xu học lớp 9

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

Ta có:

\(\text{VT}=\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\)

\(=\frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}=\frac{ab+bc+ac+a+b+c}{abc+(ab+bc+ac)+(a+b+c)+1}\)

\(=\frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\)

Ta cần chứng minh \(\text{VT}\geq \frac{3}{4}\)

\(\Leftrightarrow \frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\geq \frac{3}{4}\)

\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3(ab+bc+ac+a+b+c)+6\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\sqrt[6]{ab.bc.ac.a.b.c}\)

(Đúng theo BĐT Cô-si)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)

14 tháng 5 2018

em cảm ơn nhiều nha

16 tháng 10 2018

Giải:

\(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)(*)

\(\Leftrightarrow\) \(\dfrac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\) \(\dfrac{ac+a+ab+b+bc+c}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\) \(\ge\) \(\dfrac{3}{4}\)

Do a+1 ; b+1; c+1 >0

\(\Rightarrow\) 4ac+4a+4ab+4b+4bc+4c \(\ge\) 3abc+3ac+3bc+3ab+3a+3b+3c+3

\(\Leftrightarrow\) ac+ab+bc+a+b+c -6 \(\ge\) 0

Áp dụng BĐT Cô-si cho 3 số

Ta có: a+b+c \(\ge\) \(3\sqrt[3]{abc}=3\)

ab+bc+ca \(\ge\) \(3\sqrt[3]{\left(abc\right)^2}\) = 3

\(\Rightarrow\)ac+ab+bc+a+b+c -6 \(\ge\) 0 ( luôn đúng)

\(\Rightarrow\) (*) được chứng minh

Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c=1

NV
17 tháng 12 2020

\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)

\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)

Dấu "=" xảy ra khi \(a=b=c\)

29 tháng 6 2018

\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\)\(\left(a^8+b^8\right)\left(a^4+b^4\right)\)

\(\Leftrightarrow a^{10}b^2+a^2b^{10}\ge a^8b^4+a^4b^8\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+a^2b^6\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^6-b^6\right)\ge0\)

Vì a^2-b^2 va a^6-b^6 cùng dấu nên ta có điều phải chứng minh.

29 tháng 6 2018

bn có thể giải rõ hơn ko?