K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

c) Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\ge\dfrac{\left(1+1+1\right)^2}{A+B+C}=\dfrac{9}{A+B+C}\)

Dấu "=" xảy ra khi và chỉ khi\(\dfrac{1}{A}=\dfrac{1}{B}=\dfrac{1}{C}\)

23 tháng 4 2017

a,

(a+ b)(\(\frac{1}{a}\)+\(\frac{1}{b}\)) =1+\(\frac{a}{b}\)+\(\frac{b}{a}\)+1 =2+\(\frac{a}{b}\)+\(\frac{b}{a}\)>=4    {vì\(\frac{a}{b}\)+\(\frac{b}{a}\)>=2 theo bất đẳng thức cô-si }.dau"="xay ra khi va  chi khi a=b

b,

(a+b+c)(1/a+1/b+1/c)=1+a/b+a/c+1+b/a+b/c+1+c/a+c/b

=3+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))+(\(\frac{a}{c}\)+c/a)>=3+2+2+2=9

đầu"="xảy ra khi và chỉ khi a=b=c                                 {>= có nghĩa là lớn hơn hoặc bằng}

23 tháng 9 2017

a)Theo bất đẳng thức cauchy:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{4}{a+b}.\left(a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Dấu "=" xảy ra khi: \(a=b\)

Ta có điều phải chứng minh

b)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge\dfrac{9}{a+b+c}.\left(a+b+c\right)\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)

Dấu "=" xảy ra khi:

\(a=b=c\)

Ta có điều phải chứng minh

NV
5 tháng 4 2022

1.

BĐT cần chứng minh tương đương:

\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

Ta có:

\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)

\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)

Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)

\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)

Do \(a;b;c\ge1\)  nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:

\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)

\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Câu 2 em kiểm tra lại đề có chính xác chưa

NV
5 tháng 4 2022

2.

Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS

Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)

\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)

BĐT cần chứng minh tương đương:

\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

Đúng theo (1)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 4 2018

a)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

=\(\dfrac{a}{a}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{c}+\dfrac{c}{a}+\dfrac{c}{b}\)

=\(1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)

=3+\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

áp dụng BĐT cô si ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

cmtt ta có \(\dfrac{b}{c}+\dfrac{c}{b}\ge2\); \(\dfrac{a}{c}+\dfrac{c}{a}\ge2\)

=> 3+\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge9\)

=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(đpcm\right)\)

a)Áp dụng bđt AM-GM cho 3 số không âm ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

TT\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta có:\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\left(đpcm\right)\)

b)\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\)

Svac-xo:

\(\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Lại có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(tự cm)

\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

2 tháng 9 2023

Để chứng minh bất đẳng thức (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2, ta sẽ sử dụng phương pháp chứng minh bất đẳng thức bằng phương pháp chứng minh định lý hình học.

Giả sử a, b, c là các số thực và (a, b, c) không phải là (0, 0, 0). Ta có thể viết lại bất đẳng thức trên dưới dạng:

(a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] - 9/2 ≥ 0

Mở rộng và rút gọn biểu thức ta có:

2a^4 + 2b^4 + 2c^4 + 4a^2b^2 + 4b^2c^2 + 4c^2a^2 - 2a^3b - 2ab^3 - 2b^3c - 2bc^3 - 2c^3a - 2ca^3 - 9/2 ≥ 0

Đặt x = a^2, y = b^2, z = c^2, ta có:

2x^2 + 2y^2 + 2z^2 + 4xy + 4yz + 4zx - 2x^(3/2)√y - 2x√y^(3/2) - 2y^(3/2)√z - 2yz^(3/2) - 2z^(3/2)√x - 2zx^(3/2) - 9/2 ≥ 0

Đặt t = √x, u = √y, v = √z, ta có:

2t^4 + 2u^4 + 2v^4 + 4t^2u^2 + 4u^2v^2 + 4v^2t^2 - 2t^3u - 2tu^3 - 2u^3v - 2uv^3 - 2v^3t - 2vt^3 - 9/2 ≥ 0

Nhận thấy rằng biểu thức trên có thể viết dưới dạng tổng của các bình phương:

(t^2 + u^2 + v^2 - tu - uv - vt)^2 + (t^2 - u^2)^2 + (u^2 - v^2)^2 + (v^2 - t^2)^2 ≥ 0

Vì mọi số thực bình phương đều không âm, nên bất đẳng thức trên luôn đúng. Từ đó, ta có chứng minh rằng (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2.

11 tháng 4 2017

đề có cho thỏa mãn gì ko

12 tháng 4 2017

Bài này mình từng giải rồi. Đề đúng phải là:

Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.

Tìm GTNN của \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Bài giải:

Ta có: \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}\)

\(\Leftrightarrow\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\dfrac{6a-b-c-2}{8}\left(1\right)\)

Tương tự \(\left\{{}\begin{matrix}\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\dfrac{6b-c-a-2}{8}\left(2\right)\\\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6c-a-b-2}{8}\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được:

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6a-b-c-2}{8}+\dfrac{6b-c-a-2}{8}+\dfrac{6c-a-b-2}{8}\)

\(=\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{abc}}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)

Dấu = xảy ra khi \(a=b=c=1\)

PS: Chép đề thì cẩn thận vô bạn.

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng