K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)=\left(x,y,z\right)\)

Khi đó :
\(Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)

Ta có :

\(x+y=\frac{a-b}{c}+\frac{b-c}{a}=\frac{a^2-ab+bc-c^2}{ac}=\frac{b\left(c-a\right)-\left(c-a\right)\left(c+a\right)}{ca}\)

\(=\frac{b\left(c-a\right)-\left(c-a\right)\left(-b\right)}{ac}=\frac{2b\left(c-a\right)}{ca}\) ( do \(a+b+c=0\))

\(\Rightarrow\frac{x+y}{z}=\frac{2b\left(c-a\right)}{ca}.\frac{b}{c-a}=\frac{2b^2}{ca}=\frac{2b^3}{abc}\)

Hoàn toàn tương tự 

\(\frac{y+z}{x}=\frac{2c^3}{abc};\frac{x+z}{y}=\frac{2a^3}{abc}\)

Do đó :

\(Q=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3\)

\(=3+\frac{2\left[\left(-c\right)^3-3ab\left(-c\right)^3+c^3\right]}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)

Ta có đpcm

18 tháng 7 2016

Ta có ; \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\)

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}=\frac{1}{b-c}+\frac{1}{a-b}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}=\frac{1}{c-a}+\frac{1}{b-c}\)

Cộng các vế lại với nhau được điều phải chứng minh.

18 tháng 7 2016

A , B , C khác nhau thì bạn làm sao có thể cho : A-C = B đc ?
 

30 tháng 8 2017

Ta có: 

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=-\left(\frac{b-c}{\left(a-b\right)\left(c-a\right)}+\frac{c-a}{\left(b-c\right)\left(a-b\right)}+\frac{a-b}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=2.\frac{-a^2-b^2-c^2+ab+bc+ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=2.\frac{\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

5 tháng 8 2017

Nothing of ý tưởng cho câu này :<

6 tháng 8 2017

Quy đồng thần chưởng thôi :|, tua qua đoạn quy đồng mẫu tử đi nhé :v

\(BDT\Leftrightarrow\frac{\left(a^4c^2+a^2b^4+b^2c^4-a^3bc^2-a^2b^3c-ab^2c^3\right)+\left(a^3b^3+a^3c^3+b^3c^3-3a^2b^2c^2\right)}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Dễ thấy: \(abc\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\forall a,b,c\)

Giờ cần chứng minh \(a^4c^2+a^2b^4+b^2c^4\ge a^3bc^2+a^2b^3c+ab^2c^3\)

Và \(a^3b^3+a^3c^3+b^3c^3\ge3a^2b^2c^2\)

Áp dụng BĐT AM-GM ta có: 

\(a^3b^3+a^3c^3+b^3c^3\ge3\sqrt[3]{\left(abc\right)^6}=3a^2b^2c^2\) (đúng)

Ko mất tính tq giả sử \(a\ge b\ge c\)

Khi đó \(a^4c^2+a^2b^4+b^2c^4\ge a^3bc^2+a^2b^3c+ab^2c^3\)

\(\Leftrightarrow c^2\left(a-b\right)\left(a^3-b^2c\right)+b^2\left(b-c\right)\left(a^2b-c^3\right)\ge0\) (đúng)

Hay ta có ĐPCM 

22 tháng 9 2017

Trần Hữu Ngọc Minh bn tham khảo nha:

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{"b+c"+"a+c"+"a+b"}=\frac{a+b+c}{2."a+b+c"}\)

Xét 2 trường hợp, ta có:

\(\cdot TH1:a+b+c=0\)thì \(\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+-1+-1=-3\)

Không phụ thuộc vào các giá trị a,b,c 1:

\(\cdot TH2:a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2."a+b+c"}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)

Không phụ thuộc vào các giá trị a,b,c 2

Từ 1 và 2 \(\Rightarrow\)đpcm

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Lời giải:

Sửa đề: \(\frac{1}{(a+b+\sqrt{2(a+c)})^3}+\frac{1}{(b+c+\sqrt{2(b+a)})^3}+\frac{1}{(c+a+\sqrt{2(b+c)})^3}\leq \frac{8}{9}\)

--------------------------

Áp dụng BĐT AM-GM:

\(a+b+\sqrt{2(a+c)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\geq 3\sqrt[3]{\frac{(a+b)(a+c)}{2}}\)

\(\Rightarrow [a+b+\sqrt{2(a+c)}]^3\geq \frac{27}{2}(a+b)(a+c)\)

\(\Rightarrow \frac{1}{(a+b+\sqrt{2(a+c)})^3}\leq \frac{2}{27(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \frac{4(a+b+c)}{27(a+b)(b+c)(c+a)}(1)\)

Lại theo BĐT AM-GM:

\((a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)(2)\)

Và:

\(16(a+b+c)\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\geq \frac{3(a+b+c)}{ab+bc+ac}\)

\(\Rightarrow ab+bc+ac\geq \frac{3}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\leq \frac{1}{6(ab+bc+ac)}\leq \frac{1}{6.\frac{3}{16}}=\frac{8}{9}\) (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Dấu "=" xảy ra khi $a=b=c=\frac{1}{4}$

27 tháng 2 2020

Bất đẳng thức

<=> \(\frac{a\left(a+b+c\right)}{\left(b+c\right)^2}+\frac{b\left(a+b+c\right)}{\left(c+a\right)^2}+\frac{c\left(a+b+c\right)}{\left(a+b\right)^2}\ge\frac{9}{4}\)

VT = \(\left(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(a+c\right)^2}+\frac{c^2}{\left(a+b\right)^2}\right)+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\ge\frac{1}{3}.\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)^2+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

lại có:

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\)

=> VT\(\ge\frac{1}{3}.\left(\frac{3}{2}\right)^2+\frac{3}{2}=\frac{9}{4}\)

Dấu "=" xảy ra <=> a = b = c.

27 tháng 2 2020

Hoặc em có thể áp dụng Bunhia

bất đẳng thức 

<=> \(\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

VT\(\ge\left(\frac{a}{b+c}+\frac{c}{a+b}+\frac{b}{a+c}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

4 tháng 7 2016

Đặt M; N; P như sau:

\(M=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge N=\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge P=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}.\)

1./ Xét hiệu: M - P

\(M-P=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}=a-b+b-c+c-a=0\)

=> M = P

2./ Bất đẳng thức \(M\ge N\ge P\)có \(M=P\)=> \(M=N=P\)

3./ Khi M = N, ta có hiệu: M - N = 0 nên:

\(\frac{a^2-c^2}{a+b}+\frac{b^2-a^2}{b+c}+\frac{c^2-b^2}{c+a}=0\)

\(\Leftrightarrow\frac{\left(a^2-c^2\right)\left(b+c\right)\left(c+a\right)+\left(b^2-a^2\right)\left(a+b\right)\left(a+c\right)+\left(c^2-b^2\right)\left(a+b\right)\left(c+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow a^4+b^4+c^4=a^2b^2+b^2c^2+c^2a^2\)(1)

Mặt khác ta luon có bất đẳng thức: \(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)dấu "=" khi a2 = b2 = c2

Do đó để xảy ra đẳng thức (1) thì a2 = b2 = c2 hay |a| = |b| = |c|. ĐPCM

4 tháng 7 2016

Làm thì mình nghĩ mình làm dc nhưng có cái giờ phải đi học rồi . Nếu tối nay chưa ai trả lời mình sẽ trả lời