K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Ta co : (x+y)2≤2(x2+y2)

=> x+y≤\(\sqrt{2\left(x^2+y^2\right)}\)

=> \(\dfrac{z^2}{x+y}\ge\dfrac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Tuong tu: \(\dfrac{x^2}{y+z}\ge\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

\(\dfrac{y^2}{x+z}\ge\dfrac{y^2}{\sqrt{2\left(x+z\right)}}\)

VT≥\(\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\dfrac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\dfrac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Dat : \(\sqrt{y^2+z^2}=a\)

\(\sqrt{x^2+z^2}=b\)

\(\sqrt{x^2+y^2}=c\)

=> a+b+c=2015 , a2=y2+z2 , b2=x2+z2 , c2=x2+y2

=> VT≥ \(\dfrac{b^2+c^2-a^2}{2\sqrt{2}.a}+\dfrac{a^2+c^2-b^2}{2\sqrt{2}.b}+\dfrac{a^2+b^2-c^2}{2\sqrt{2}c}\)

\(\dfrac{1}{2\sqrt{2}}\left[\dfrac{\left(b+c\right)^2}{2a}+\dfrac{\left(a+b\right)^2}{2c}+\dfrac{\left(a+c\right)^2}{2b}-2015\right]\)

\(\dfrac{1}{2\sqrt{2}}\left[2\left(a+b+c\right)-2015\right]\)

= \(\dfrac{2015}{2\sqrt{2}}\)

NV
7 tháng 8 2021

\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)

áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương

ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)

ta có :

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)

lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :

\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)

vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673

14 tháng 5 2021

Ta có x2-xy+y2=\(\left(\dfrac{x+y}{2}\right)^2+3\left(\dfrac{x-y}{2}\right)^2\)\(\ge\)\(\left(\dfrac{x+y}{2}\right)^2\)

=>\(\dfrac{\sqrt{x^2-xy+y^2}}{x+y+2z}\ge\dfrac{x+y}{2\left(x+y+2z\right)}\)(1) . Tương tự ...

Đặt \(\left\{{}\begin{matrix}y+z=a\\x+z=b\\x+y=c\end{matrix}\right.\)(a,b,c>0). Khi đó ta có :

S=\(\dfrac{1}{2}\left(\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\right)\ge\dfrac{3}{4}\)  (Netbit)

AH
Akai Haruma
Giáo viên
16 tháng 7 2017

Tương tự https://hoc24.vn/hoi-dap/question/280689.html

NV
9 tháng 4 2021

\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

\(VT\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}\)

\(VT\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\le\dfrac{1}{2}\sqrt{3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)}=\dfrac{\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

NV
29 tháng 7 2021

\(a^2+b^2=\left(a+b-c\right)^2=a^2+\left(b-c\right)^2+2a\left(b-c\right)=b^2+\left(a-c\right)^2+2b\left(a-c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}b^2=\left(b-c\right)^2+2a\left(b-c\right)\\a^2=\left(a-c\right)^2+2b\left(a-c\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)

\(=\dfrac{\left(a-c\right)\left(a+b-c\right)}{\left(b-c\right)\left(b+a-c\right)}=\dfrac{a-c}{b-c}\) (đpcm)

29 tháng 7 2021

em cảm ơn ạ! E ko ngờ lm thế này lun í 

29 tháng 8 2021

Giá trị nhỏ nhất là căn 82

29 tháng 8 2021

\(\dfrac{1}{3}\)

NV
10 tháng 1 2021

\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)

Ta có:

\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)

\(VT\ge2\left(x+y+z\right)+2y+4x\)

\(VT\ge2\left(3x+2y+z\right)\ge4\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)