K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

Áp dụng BĐT cosi:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2\left(y+z\right)}{4\left(y+z\right)}}=\dfrac{2x}{2}=x\)

Cmtt \(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y;\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{2\left(x+y+z\right)}{4}\ge x+y+z\\ \Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge x+y+z-\dfrac{x+y+z}{2}=\dfrac{x+y+z}{2}\)

Dấu \("="\Leftrightarrow x=y=z\)

 

29 tháng 5 2018

Ta có \(A=\frac{x^4}{x^3+x^2y+xy^2}+...\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x}\)

=> \(A\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)\left(x+y+z\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge\frac{x+y+z}{3}\left(ĐPCM\right)\)

dấu = xảy ra <=> x=y=z>=0

29 tháng 5 2018

Thanks

\(VT=\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2+y^2}{z^2}+z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}>=2\cdot\sqrt{\dfrac{y^2}{x^2}\cdot\dfrac{x^2}{y^2}}=2\)

=>\(VT>=5+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}>=2\cdot\sqrt{\dfrac{x^2}{z^2}\cdot\dfrac{z^2}{16x^2}}=\dfrac{1}{2}\)

\(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}>=\dfrac{1}{2}\)

và \(\dfrac{1}{x^2}+\dfrac{1}{y^2}>=\dfrac{2}{xy}>=\dfrac{2}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{8}{\left(x+y\right)^2}\)

=>\(\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)>=\dfrac{15}{16}z^2\cdot\dfrac{8}{\left(x+y\right)^2}=\dfrac{15}{2}\left(\dfrac{z}{x+y}\right)^2=\dfrac{15}{2}\)

=>VT>=5+1/2+1/2+15/2=27/2

14 tháng 8 2016

Áp dụng BĐT Cô si ta có:

\(x+y\ge2\sqrt{xy}=2\cdot\frac{1}{\sqrt{z}};y+z\ge2\sqrt{yz}=2\cdot\frac{1}{\sqrt{x}};z+x\ge2\sqrt{xz}=2\cdot\frac{1}{\sqrt{y}}.\)( vì xyz=1)

=> P\(\ge\)\(\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}\)\(\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\hept{\begin{cases}a=y\sqrt{y}+2z\sqrt{z}\\b=z\sqrt{z}+2x\sqrt{x}\\c=x\sqrt{x}+2y\sqrt{y}\end{cases}\left(a;b;c\ge0\right)}\)<=> \(\hept{\begin{cases}4a+b=2c+9z\sqrt{z}\\4b+c=2a+9x\sqrt{x}\\4c+a=2b+9y\sqrt{y}\end{cases}}\)

<=> \(\hept{\begin{cases}z\sqrt{z}=\frac{4a+b-2c}{9}\\x\sqrt{x}=\frac{4b+c-2a}{9}\\y\sqrt{y}=\frac{4c+a-2b}{9}\end{cases}}\)

Do đó:

\(\ge\)\(\frac{2}{9}\cdot\left(\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}+\frac{4c+a-2b}{b}\right)\)

<=> P \(\ge\)\(\frac{2}{9}\left(4\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)+\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)-6\right)\)

<=> P \(\ge\frac{2}{9}\cdot\left(4\cdot3\cdot\sqrt[3]{\frac{a}{c}\cdot\frac{b}{a}\cdot\frac{c}{b}}+3\cdot\sqrt[3]{\frac{b}{c}\cdot\frac{c}{a}\cdot\frac{a}{b}}-6\right)\)( Áp dụng BĐT Cô si cho 3 số ko âm)

<=> P \(\ge\frac{2}{9}\left(12+3-6\right)=2\)( đpcm)

Dấu = khi x=y=z=1.

26 tháng 10 2019

Bài này dùng Cauchy ngược dấu:

\(\Sigma\frac{2x^2}{x+y^2}=\Sigma\frac{2x\left(x+y^2\right)-2xy^2}{x+y^2}=2\left(x+y+z\right)-2.\Sigma\frac{xy^2}{x+y^2}\)

Từ đây ta có thể quy bđt vế chứng minh: \(\Sigma\frac{xy^2}{x+y^2}\le\frac{x+y+z}{2}\)

Ta có: \(VT\le\Sigma\frac{xy^2}{2\sqrt{xy^2}}=\Sigma\frac{\sqrt{xy.y}}{2}\le\frac{xy+yz+zx+x+y+z}{4}\)

Như vậy cần chứng minh: \(xy+yz+zx\le x+y+z\)

Ta có: \(VT=\sqrt{\left(xy+yz+zx\right)^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}=\sqrt{3\left(xy+yz+zx\right)}\le x+y+z\)

Từ đây có đpcm:)