K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$

$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$

$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y)(y+z)(x+z)=0$

$\Leftrightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$

Nếu $x=-y$ thì:

$P=\frac{3}{4}+[(-y)^8-y^8](y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}+0.(y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}$

Nếu $y=-z$ thì:

$P=\frac{3}{4}+(x^8-y^8)[(-z)^9+z^9](z^{10}-x^{10})=\frac{3}{4}+(x^8-y^8).0.(z^{10}-x^{10})=\frac{3}{4}$

Nếu $z=-x$ thì:

$P=\frac{3}{4}+(x^8-y^8)(y^9+z^9)[(-x)^{10}-x^{10}]=\frac{3}{4}+(x^8-y^8)(y^9+z^9).0=\frac{3}{4}$

NV
13 tháng 12 2020

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

20 tháng 4 2017

Ta có: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge\dfrac{3x}{4}\)

\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\dfrac{6x-y-z-2}{8}\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\dfrac{6y-z-x-2}{8}\left(2\right)\\\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{6z-x-y-2}{8}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3)

\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{6x-y-z-2}{8}+\dfrac{6y-z-x-2}{8}+\dfrac{6z-x-y-2}{8}\)

\(=\dfrac{1}{2}\left(x+y+z\right)-\dfrac{3}{4}\ge\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)

NV
9 tháng 4 2021

\(\left(x-1;y-1\right)=\left(a;b\right)\Rightarrow\left\{{}\begin{matrix}a;b>0\\a+b\le2\end{matrix}\right.\)

\(A=\dfrac{\left(a+1\right)^4}{b^2}+\dfrac{\left(b+1\right)^4}{a^2}\ge\dfrac{1}{2}\left[\dfrac{\left(a+1\right)^2}{b}+\dfrac{\left(b+1\right)^2}{a}\right]^2\)

\(A\ge\dfrac{1}{2}\left[\dfrac{\left(a+b+2\right)^2}{a+b}\right]^2\ge\dfrac{1}{2}\left[\dfrac{8\left(a+b\right)}{a+b}\right]^2=32\)

 

11 tháng 5 2023

Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có 

\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)

\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)

    \(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)