K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 6 2020

\(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)

\(\Leftrightarrow8+2\left(xy+yz+zx\right)-4\left(x+y+z\right)-xyz\ge0\)

\(\Leftrightarrow2\left(xy+yz+zx\right)\ge4+xyz\ge4\)

\(\Rightarrow xy+yz+zx\ge2\)

\(\Rightarrow Q=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le9-2.2=5\)

\(Q_{max}=5\) khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và hoán vị

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

21 tháng 2 2020

 \(0\le x,y,z\le1\Rightarrow x^{10}\le x;y^6\le y;z^{2016}\le z;0\le xyz\le1\)

CÓ: \(\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)

=>\(1-xyz+\left(xy+yz+zx\right)-\left(x+y+z\right)\ge0\)

=>\(x+y+z-xy-yz-zx-xyz\le1\)

=>\(x^{10}+y^6+z^{2016}-xy-yz-zx\le1\)

Dấy "=" xảy ra <=> trong 3 số x,y,z có 1 số bằng 0, 2 số bằng 1 hoặc 1 số bằng 1, 2 số bằng 0

7 tháng 6 2019

Ta có x,y,z là các số thực dương 

Khi đó : \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0.\)

\(\Leftrightarrow5\frac{x^2}{\left(y+z\right)^2}+\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}-\frac{9x}{y+z}-\frac{18yz}{\left(y+z\right)^2}=0\)

\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-\frac{9x}{y+z}=\frac{18yz}{\left(y+z\right)^2}-\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}\)

                                                \(\le\frac{\frac{18\left(y+z\right)^2}{4}}{\left(y+z\right)^2}-\frac{\frac{5\left(y+z\right)^2}{2}}{\left(y+z\right)^2}=\frac{18}{4}-\frac{5}{2}=2.\)

\(\Rightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}\le2.\)

Đặt \(\frac{x}{y+z}=a>0\)ta được \(5a^2-9a-2\le0\)

\(\Leftrightarrow5a^2-10a+a-2\le0\Leftrightarrow\left(5a+1\right)\left(a-2\right)\le0\)

Dễ thấy  \(5a+1>0\)\(\Rightarrow a-2\le0\Leftrightarrow a\le2\Leftrightarrow\frac{x}{y+z}\le2.\)

Ta có: \(Q=\frac{2x-y-z}{y+z}=\frac{2x}{y+z}-1\le2.2-1=3\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}y=z\\\frac{x}{y+z}=2\end{cases}\Leftrightarrow x=4y=4z}\)

Vậy Giá trị lớn nhất của \(Q=3\Leftrightarrow x=4y=4z.\)

NV
22 tháng 10 2021

\(x^{2011}+x^{2011}+1+...+1\) (2009 số 1) \(\ge2011\sqrt[2011]{x^{4022}}=2011x^2\)

Tương tự:

\(2y^{2011}+2009\ge2011y^2\)\(2z^{2011}+2009\ge2011z^2\)

Cộng vế:

\(2\left(x^{2011}+y^{2011}+z^{2011}\right)+6027\ge2011\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2011\left(x^2+y^2+z^2\right)\le6033\)

\(\Rightarrow x^2+y^2+z^2\le3\)

24 tháng 5 2020

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)

Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:

\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)

\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)

Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)

Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)

\(\le1+\frac{2017}{3}=\frac{2020}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

16 tháng 5 2017

Đặt: y + z = a thì ta có

\(x\le2a\)

Từ đề bài thì ta có thể suy ra

\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)

\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)

 \(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)

 Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\) 

16 tháng 5 2017

Làm sao để tách được bởi vì làm sao dự đoán dượcđiểm rơi?