K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Chứng minh \(xy+yz+xz-2xyz\leq \frac{7}{27}\)

Theo BDDT Schur ta có \(xyz\geq (x+y-z)(z+x-y)(y+z-x)=(1-2x)(1-2y)(1-2z)\)

\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)

Do đó \(A=xy+yz+xz-xyz\leq xy+yz+xz-\frac{8}{9}(xy+yz+xz)+\frac{2}{9}=\frac{xy+yz+zx}{9}+\frac{2}{9}\)

Theo AM-GM dễ thấy \(1=(xy+yz+xz)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow A\leq \frac{7}{27}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

Chứng minh \(xy+yz+xz-2xyz\geq 0\)

Do $x,y,z\geq 0$ nên

\(A=xy(1-z)+yz(1-x)+xz=xy(x+y)+yz(y+z)+xz\geq 0\)

Dấu bẳng xảy ra khi \((x,y,z)=(0,0,1)\) và các hoán vị của nó

2 tháng 2 2017

Cậu thật giỏi ,cảm ơn nhiều nha .Cho mình xin nick face để cùng nhau học tập nhé Akai Haruma

NV
7 tháng 10 2020

Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow xy+yz+zx-2xyz=xy\left(1-z\right)+yz\left(1-x\right)+zx\ge0\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

Mặt khác do vai trò của x;y;z là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x=min\left\{x;y;z\right\}\Rightarrow1=x+y+z\ge3x\Rightarrow0\le x\le\frac{1}{3}\)

\(P=x\left(y+z\right)+yz\left(1-2x\right)=x\left(1-x\right)+yz\left(1-2x\right)\)

\(P\le x\left(1-x\right)+\frac{1}{4}\left(y+z\right)^2\left(1-2x\right)=x\left(1-x\right)+\frac{1}{4}\left(1-x\right)^2\left(1-2x\right)\)

\(P\le\frac{-2x^3+x^2+1}{4}=\frac{-2x^3+x^2+1}{4}-\frac{7}{27}+\frac{7}{27}\)

\(P\le-\frac{\left(1-3x\right)^2\left(6x+1\right)}{108}+\frac{7}{27}\le\frac{7}{27}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
8 tháng 10 2020

Đặt vế trái là P

Ta có: \(P\le x^2y+y^2z+z^2x+xyz\)

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\Rightarrow\left(x-y\right)\left(x-z\right)\le0\)

\(\Leftrightarrow x^2+yz\le xy+xz\)

\(\Rightarrow x^2y+y^2z\le xy^2+xyz\)

\(\Rightarrow P\le xy^2+z^2x+2xyz=x\left(y^2+z^2+2yz\right)=x\left(y+z\right)^2\)

\(\Rightarrow P\le\frac{1}{2}.2x\left(y+z\right)\left(y+z\right)\le\frac{1}{2}\left(\frac{2x+y+z+y+z}{3}\right)^3=\frac{4}{27}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{3};0;\frac{2}{3}\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:
Vế đầu tiên:

Áp dụng BĐT AM-GM ta có:

\(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 3\sqrt[3]{xyz}.3\sqrt[3]{xy.yz.xz}=9xyz\)

\(9xyz\geq 2xyz\) với mọi $x,y,z\geq 0$

Do đó: \(xy+yz+xz\geq 2xyz\Rightarrow xy+yz+xz-2xyz\geq 0\)

Ta có đpcm.

Vế thứ hai

Áp dụng BĐT Schur bậc 3 ta có (hoặc bạn có thể cm BĐT quen thuộc này bằng AM-GM ngược dấu)

\(xyz\geq (x+y-z)(y+z-x)(z+x-y)\)

\(\Leftrightarrow xyz\geq (1-2z)(1-2x)(1-2y)\)

\(\Leftrightarrow xyz\geq 4(xy+yz+xz)-2(x+y+z)+1-8xyz=4(xy+yz+xz)-1-8xyz\)

\(\Rightarrow 9xyz\geq 4(xy+yz+xz)-1\Rightarrow xyz\geq \frac{4}{9}(xy+yz+xz)-\frac{1}{9}\)

Do đó:

\(xy+yz+xz-2xyz\leq xy+yz+xz-2\left(\frac{4}{9}(xy+yz+xz)-\frac{1}{9}\right)=\frac{xy+yz+xz+2}{9}(*)\)

Mà theo hệ quả quen thuộc của BĐT AM-GM:

\(1=(x+y+z)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{xy+yz+xz+2}{9}\leq \frac{\frac{1}{3}+2}{9}=\frac{7}{27}(**)\)

Từ \((*);(**)\Rightarrow xy+yz+xz-2xyz\leq \frac{7}{27}\) (đpcm)

7 tháng 10 2020

BĐT cần chứng minh tương đương:

\(x^3+y^3+z^3+6xyz\ge\frac{\left(x+y+z\right)^3}{4}\)

\(\Leftrightarrow x^3+y^3+z^3+6xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\)

Mặt khác theo BĐT Schur thì:

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\).

Do đó điều trên luôn đúng. BĐT dc chứng minh.

2 tháng 3 2019

a)

\(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)

\(\)Ta có

\(x^2+x+5=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\)

=> Bất phương trình đàu tiên sai, hệ bất phương trình sai

b)

\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)\left(x+2\right)>0\\\left(x-3\right)\left(3x-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge3\end{matrix}\right.\end{matrix}\right.\)

2 tháng 3 2019

bạn ơi giải giúp mình câu c, e, f giùm mình với ạ .

NV
8 tháng 10 2020

Đặt \(\left\{{}\begin{matrix}x+y+z=p=3\\xy+yz+zx=q\\xyz=r\end{matrix}\right.\) \(\Rightarrow q\le\frac{1}{3}\left(x+y+z\right)^2=3\Rightarrow0\le q\le3\)

Theo BĐT Schur: \(r\ge\frac{p\left(4q-p^2\right)}{9}=\frac{4q-9}{3}\)

\(VT=p^2-2q+r=9-2q+r\ge9-2q+\frac{4q-9}{3}=4+\frac{2\left(3-q\right)}{3}\ge4\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 10 2020

có cách nào ko dùng bđt ko vậy ?