K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Lời giải với kiến thức lớp 8:

\(a^{2017}+b^{2017}\le a^{2018}+b^{2018}\)

\(\Leftrightarrow a^{2017}\left(a-1\right)+b^{2017}\left(b-1\right)\ge0\)

\(\Leftrightarrow a^{2017}\left(a-\frac{a+b}{2}\right)+b^{2017}\left(b-\frac{a+b}{2}\right)\ge0\)

\(\Leftrightarrow a^{2017}\cdot\frac{a-b}{2}+b^{2017}\cdot\frac{b-a}{2}\ge0\)

\(\Leftrightarrow\left(a^{2017}-b^{2017}\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^{2016}+a^{2015}b+a^{2014}b^2+...+b^{2016}\right)\ge0\)

Bất đẳng thức cuối đúng với mọi a, b. Do đó bất đẳng thức đã cho là đúng.

DT
12 tháng 6 2023

Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)

\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )

\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )

Do a,b >0 

Nên áp dụng BDT Cô Si :

\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)

Do đó (*) luôn đúng

Vậy ta chứng minh đc bài toán

Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)

22 tháng 7 2023

a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).

Bất đẳng thức trên tương đương : 

\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0

\(\Leftrightarrow\)\(\dfrac{b}{a^2+b}\)\(\dfrac{a}{b^2+a}\)\(\le\)-1

\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)\(\dfrac{b}{a^2+b}\)\(\ge\)1

Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)\(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)

\(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)

\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1

Vậy BĐT được chứng minh

Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1

NV
21 tháng 8 2021

\(VT=3\left(\dfrac{1}{4ab}+\dfrac{1}{a^2+4b^2}\right)+\dfrac{1}{2.a.2b}\ge\dfrac{12}{a^2+4ab+4b^2}+\dfrac{2}{\left(a+2b\right)^2}=14\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)

21 tháng 8 2021

anh ơi sao lại là  \(\dfrac{2}{\left(a+2b\right)^2}\) ạ

 

19 tháng 5 2017

Từ \(a+b+ab=3\Rightarrow a+b=3-ab\ge3-\frac{\left(a+b\right)^2}{4}\)

\(\Rightarrow\left(a+b+6\right)\left(a+b-2\right)\ge0\Rightarrow a+b\ge2\)

Biến đổi bài toán như sau: 

\(P=\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}-a^2-b^2\le\frac{3}{2}\)

Tức là chứng minh \(\frac{3}{2}\) là GTLN của \(P\)

\(P=\frac{3\left(a^2+b^2\right)+3\left(a+b\right)}{ab+a+b+1}+\frac{3-a-b}{a+b}-\left(a+b\right)^2++2\left(3-a-b\right)\)

\(=\frac{3}{4}\left[3\left(a+b\right)^2-6\left(3-a-b\right)+3\left(a+b\right)\right]\)

\(+\frac{3}{a+b}-1-\left(a+b\right)^2+6-2\left(a+b\right)\)

Khảo sat đồ thì trên \(a+b\ge2\) tìm tìm được \(P_{Max}=\frac{3}{2}\)

P/s:giờ mk đi ngủ, mệt r` chỗ nào khó hiểu mai hỏi :D

20 tháng 5 2017

ta có: \(VT=\frac{a\left(a+b+ab\right)}{b+1}+\frac{b\left(a+b+ab\right)}{a+1}+\frac{ab}{a+b}\)

\(=a^2+b^2+\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\)

cần cm \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}\)

theo giả thiết \(4=\left(a+1\right)\left(b+1\right)\le\frac{1}{4}\left(a+b+2\right)^2\)

\(\Leftrightarrow a+b\ge2\)

ta có: \(\frac{ab}{a+b}=\frac{ab+a+b}{a+b}-1=\frac{3}{a+b}\le\frac{3}{2}-1\)(*)

\(\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{1}{4}\left(b+ab\right)+\frac{1}{4}\left(a+ab\right)=\frac{1}{4}\left(3+ab\right)\)(**)

giờ cần tìm max ab.để ý rằng \(ab=ab+a+b-\left(a+b\right)=3-\left(a+b\right)\le3-2=1\)

khi đó \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}-1+\frac{1}{4}\left(3+1\right)=\frac{3}{2}\)(đpcm)

dấu = xảy ra khi a=b=1