K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3=0^3\)

\(\Leftrightarrow\)\(\left(\frac{1}{x}\right)^3+\left(\frac{1}{y}\right)^3+\left(\frac{1}{z}\right)^3+3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)=0\)

\(\Leftrightarrow\)\(\frac{1^3}{x^3}+\frac{1^3}{y^3}+\frac{1^3}{z^3}=-3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)\)

Lại có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\\\frac{1}{y}+\frac{1}{z}=\frac{-1}{x}\\\frac{1}{z}+\frac{1}{x}=\frac{-1}{y}\end{cases}}\)

\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(-3\right).\frac{-1}{z}.\frac{-1}{x}.\frac{-1}{y}\)

\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm ) 

Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Chúc bạn học tốt ~ 

16 tháng 6 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{-3}{x^2y}-\frac{3}{xy^2}=\frac{-3}{xy}.\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{-3}{xy}.-\frac{1}{z}=\frac{3}{xyz}\)

26 tháng 12 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)

CM : \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\)

CM: \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+x^3z^3+y^3z^3\right)}{3xyz}=\frac{3x^2y^2z^2}{xyz}=xyz\)

13 tháng 1 2021

Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)

\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\) 

Mà x+y+z=xyz

=> P+2=3=>P=1

Vậy P=1

9 tháng 1 2018

Ta có :

 \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

Khi đó ta chứng minh được :

\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)

Mà \(x+y+z=0\)

\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)

Từ đó ta suy ra :

\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)

\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)

\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)

\(=xyz\)( ĐPCM )

Hên xui thôi

26 tháng 3 2019

Có: \(x+y+z=0\)

CM được: \(x^3+y^3+z^3=3xyz\)

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow xy+xz+yz=0\)

\(\Leftrightarrow\left(xy+xz+yz\right)^3=0\)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3\left(xy+yz\right)\left(xz+yz\right)\left(xz+xy\right)=0\)(từ CT: (a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)(Thế x+y=-z ; y+z=-x và x+z=-y)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3=3x^2y^2z^2\)

\(\Leftrightarrow2\left(x^3y^3+x^3z^3+y^3z^3\right)=6x^2y^2z^2\)(1)

Có: \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^6+y^6+z^6+2\left(x^3y^3+x^3z^3+y^3z^3\right)=9x^2y^2z^2\)(2)

Từ (1) và (2):

Có: \(x^6+y^6+z^6=3x^2y^2z^2\)

Cho nên: \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{3x^2y^2z^2}{3xyz}=xyz\)

1 tháng 7 2020

bằng gì kệ màylởp 3 đó híhí

25 tháng 12 2016

Xét: \(x+y+z=xyz\Leftrightarrow\frac{x+y+z}{xyz}=1\)

\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Mặt khác:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)<=>\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\sqrt{3}\right)^2\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.1=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)

7 tháng 4 2017

ủng hộ mk nha mọi người

20 tháng 11 2017

Bạn tự chứng minh hằng đẳng thức

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Mà x+y+z=0

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

Tương tự bạn có \(x^6+y^6+z^6=3x^2y^2z^2\)

Thay vào là đc. Có chỗ nào chưa hiểu thì kb và k cho mk nha, mk sẽ chỉ rõ hơn

20 tháng 11 2017

cảm ơn nha

7 tháng 4 2019

1/y+1/x+1/z=0

=>xy+yz+xz=0(tự cm)

(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2=0

x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+3xyz=3xyz

x^6+y^6+z^6=(x^2+y^2+z^2)(X^4+y^4+z^4+x^2y^2+y^2z^2+z^2z^2)+3(xyz)^2=3(xyz)^2

=> (x^6+y^6+z^6)/(x^3+y^3+z^3)=3(Xyz)^2/3xyz=xyz(dpcm)

7 tháng 4 2019

:D???? ể??

\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-y-z\\y=-z-x\\z=-x-y\end{cases}}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\)

\(\hept{\begin{cases}xy=\left(-y-z\right).y=-y^2-zy\\yz=\left(-x-z\right).z=-z^2-xz\\xz=\left(-y-x\right).x=-x^2-xy\end{cases}}\Rightarrow xy+yz+zx=-\left(x^2+y^2+z^2+xz+xy+zy\right)=0\)

\(\Leftrightarrow x=y=z=0??????\)

p/s: ko biết t lỗi hay đề lỗi ((: 

27 tháng 4 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)

Nếu   \(x+y+z=0\)thì   \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)

\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)

Nếu  \(x+y+z\ne0\)thì   \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)

suy ra:   \(\frac{x-y-z}{x}=-1\)            \(\Rightarrow\)       \(x-y-z=-x\)          \(\Rightarrow\)     \(y+z=2x\)

             \(\frac{-x+y-z}{y}=-1\)                     \(-x+y-z=-y\)                         \(x+z=2y\)

             \(\frac{-x-y+z}{z}=-1\)                    \(-x-y+z=-z\)                         \(x+y=2z\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)

\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)