K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(

6 tháng 10 2016

mik đăng cái khác rồi đó

 

9 tháng 5 2019

 Mình nghĩ thế này ạ

xy + 2(yz + xz) =5 => xy + 2yz + 2xz =5

Mình áp dụng bất đẳng thức này nhé :)
Ta có:  \(\left(x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow x^2+y^2\ge2xy\forall x,y\)

\(\Rightarrow\frac{1}{2}\left(x^2+y^2\right)\ge xy\forall x,y\)(1)

Chứng minh tương tự ta được \(y^2+z^2\ge2yz\forall y,z\)(2)

\(x^2+z^2\ge2xz\forall x,z\)(3)

Cộng vế (1) (2) (3) ta được \(\frac{1}{2}\left(x^2+y^2\right)+y^2+z^2+x^2+z^2\ge xy+2yz+2xz\forall x,y,z\)

\(\Rightarrow\frac{1}{2}x^2+\frac{1}{2}y^2+x^2+y^2+z^2+z^2\)\(\ge5\)\(\forall x,y,z\)

\(\Rightarrow\frac{3}{2}x^2+\frac{3}{2}y^2+2z^2\ge5\forall x,y,z\)

nhân cả 2 vế với 2 nè

\(\Rightarrow3x^2+3y^2+4z^2\ge10\forall x,y,z\)

\(\Rightarrow3\left(x^2+y^2\right)+4z^2\ge10\forall x,y,z\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\y=z;x=z\\xy+2\left(yz+xz\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2+2.\left(x^2+x^2\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\5x^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2=1\end{cases}\Leftrightarrow}}\)x=y=z = 1 hoăc 

Vậy giá trị nhỏ nhất của biểu thức là 10 tại x=y=z=1;-1

8 tháng 5 2018

Đặt \(a=\frac{9+3\sqrt{17}}{4}\) và  \(b=\frac{3+\sqrt{17}}{4}\)khi đó \(a=3b\)và  \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)

Áp dụng BĐT AM-GM ta thu được các BĐT sau:  \(x^2+b^2y^2\ge2bxy\)

                                                                         \(by^2+z^2\ge2byz\)

                                                                         \(a\left(z^2+x^2\right)\ge2azx\)

Cộng các vế theo các vế các BĐT thu được để có: 

\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)

Hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Từ đó ta thay các giá trị của \(xy+yz+3zx\); b và c để có được

\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)

Cuối cùng, với \(x=z=\frac{1}{\sqrt[4]{17}}\)và \(y=\sqrt{\frac{13\sqrt{17}-51}{34}}\)( Thỏa mãn giả thiết )  thì \(P=\frac{\sqrt{17}-3}{2}\)

Nên ta kết luận \(\frac{\sqrt{17}-3}{2}\)là giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2\)