K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

Dựa vào điều kiện xuy ra được trong 3 xô: \(\left(1-a\right);\left(1-b\right);\left(1-c\right)\)co 2 xô cùng dâu. Giả xư đo là \(\left(1-a\right);\left(1-b\right)\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\)

Ta lại co:

\(4=a^2+b^2+c^2+abc\ge c^2+2ab+abc\)

\(\Leftrightarrow ab\left(2+c\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Quay lại bài toan ta co:

\(ab+bc+ca-abc\le2+\text{​​}\left(bc+ca-abc-c\right)=2-c\left(1-a\right)\left(1-b\right)\le2\)

19 tháng 7 2016

bài nè cấp 2 chưa làm đc đâu bạn ạ

NV
18 tháng 9 2021

\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)

\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)

\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

18 tháng 9 2021

Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ 

bđt phụ sai mà cũng ko đc chuẩn hóa

23 tháng 8 2017

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

8 tháng 3 2023

Ta có: \(\dfrac{a^3+ab^2}{a^2+b+b^2}=a-\dfrac{ab}{a^2+b+b^2}\ge a-\dfrac{\sqrt[3]{a}}{3}\)

Tương tự: 

\(\Rightarrow VT\ge a+b+c-\dfrac{\Sigma\sqrt[3]{a}}{3}=3-\dfrac{\Sigma\sqrt[3]{a}}{3}\)

Áp dụng BĐT cô si chi 3 số dương, ta có:

\(a+1+1\ge3\sqrt[3]{a}\Rightarrow\dfrac{\sqrt[3]{a}}{3}\le\dfrac{a+2}{9}\)

Tương tự:

\(\Rightarrow VT\ge3-\dfrac{a+b+c+6}{9}=3-1=2\left(đpcm\right)\)

Dấu "=" xảy ra <=> a=b=c=1

27 tháng 5 2020

Không hiểu sao BĐT dạo này được cập nhật lên khá nhiều,thôi thì làm theo bản năng vậy :))

Do \(a^2+b^2+c^2+abc=4\) nên ta đặt được ẩn phụ dưới dạng 

\(a=\frac{2x}{\sqrt{\left(x+y\right)\left(x+z\right)}};b=\frac{2y}{\sqrt{\left(y+z\right)\left(y+x\right)}};c=\frac{2z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Khi đó BĐT cần chứng minh tương đương với:

\(\Sigma\frac{2xy}{\left(x+y\right)\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}+1\)

Theo AM - GM  thì ta dễ dàng có:

\(\frac{2xy}{\left(x+y\right)\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{x+y}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow LHS\le\Sigma\frac{xy}{\left(x+y\right)\left(x+z\right)}+\Sigma\frac{xy}{\left(x+y\right)\left(y+z\right)}\)

\(=\Sigma\frac{xy}{\left(x+y\right)\left(x+z\right)}+\Sigma\frac{zx}{\left(x+y\right)\left(x+z\right)}\)

\(=\Sigma\frac{x\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}=1+\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

BĐT được chứng minh

11 tháng 6 2020

Cách khác :)))

Theo nguyên lý Dirichlet thì trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu

Giả sử đó là \(a-1;b-1\)

Khi đó:\(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\Leftrightarrow abc+c\ge ac+bc\)

Vì vậy \(ab+bc+ca-abc\le ab+bc+ca+c-ac-bc=ab+c\)

Ta sẽ chứng minh \(ab+c\le2\)

Thật vậy !

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\Leftrightarrow4-c^2\ge ab\left(c+2\right)\)

\(\Leftrightarrow ab+c\le2\left(đpcm\right)\)

26 tháng 2 2018

a,b,c đều = 1

vì theo đề bài a,b,c là số dương mà a2 + b2 + c2 + abc =4 vậy nên a,b,c là 1 số cực nhỏ để khi bình phương lên nó có thể cộng với các hạng tử còn lại hơn nữa khi chúng nhân với nhau thì ko đc vượt quá 1 để có thể cộng với a2
b2, c2 để bằng 4
tìm đc a,b,c đều bằng 1 rồi thay vào ab+bc+ca-abc < hoặc bằng 2 là chứng minh đc. Chúc bạn may mắn

26 tháng 2 2018

:v Bạn biết chứng minh BĐT là gì không vậy, và cho hỏi bạn lớp mấy vậy