K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

Nguyễn Thu Huyền Chỗ nào có \(\le\) thì chuyển thành \(\ge\) nhé. Thế là ok. Tại mk bấm nhầm leu

30 tháng 7 2019

\(\text{Ta có }:a^2+ab+b^2=\left(a^2+2ab+b^2\right)-ab\\ =\left(a+b\right)^2-ab\overset{BĐT\text{ }Cô-si}{\le}\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3}{4}\left(a+b\right)^2\\ \Rightarrow\sqrt{a^2+ab+b^2}\le\frac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự : \(\sqrt{b^2+bc+c^2}\le\frac{\sqrt{3}}{2}\left(b+c\right)\)

\(\sqrt{a^2+ac+c^2}\le\frac{\sqrt{3}}{2}\left(a+c\right)\\ \Rightarrow\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{a^2+ac+c^2}\\ \le\frac{\sqrt{3}}{2}\left(a+b\right)+\frac{\sqrt{3}}{2}\left(b+c\right)+\frac{\sqrt{3}}{2}\left(a+c\right)\\= \frac{\sqrt{3}}{2}\left(a+b+b+c+a+c\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}a=b\\b=c\\a=c\\a+b+c=3\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=1\)

23 tháng 6 2021

Áp dụng bđt cosi schwart ta có:

`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`

Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`

`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`

Dấu "=" `<=>a=b=c=1.`

23 tháng 6 2021

uầy CTV luôn

4 tháng 9 2021

Ủa bị lỗi hả:v? undefined

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Áp dụng BĐT AM-GM (Cô-si)

\(1+a^3+b^3\geq 3\sqrt[3]{a^3b^3}=3ab\)

\(\Rightarrow \frac{\sqrt{1+a^3+b^3}}{ab}\geq \frac{\sqrt{3ab}}{ab}=\frac{c\sqrt{3ab}}{abc}=c\sqrt{3ab}=\sqrt{c}.\sqrt{3abc}=\sqrt{3c}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+b^3+c^3}}{bc}\geq \sqrt{3a}\)

\(\frac{\sqrt{1+a^3+c^3}}{ac}\geq \sqrt{3b}\)

Cộng theo vế những BĐT vừa thu được ta có:

\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\geq \sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c})\)

\(\geq \sqrt{3}.3\sqrt[3]{\sqrt{a}.\sqrt{b}.\sqrt{c}}=\sqrt{3}.3\sqrt[6]{abc}=3\sqrt{3}\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

1 tháng 12 2018

cảm ơn nhiều nhé

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)

\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$

22 tháng 4 2018

\(\Leftrightarrow y=\dfrac{\sqrt{c-2}}{c}+\dfrac{\sqrt{a-3}}{a}+\dfrac{\sqrt{b-4}}{b}\)

Ta có: \(\dfrac{\sqrt{c-2}}{c}\le\dfrac{1}{2\sqrt{2}}\Leftrightarrow\left(\sqrt{c-2}-\sqrt{2}\right)^2\ge0\) ( Luôn đúng)

Tương tự: \(\dfrac{\sqrt{a-3}}{a}\le\dfrac{1}{2\sqrt{3}};\dfrac{\sqrt{b-4}}{b}\le\dfrac{1}{4}\)

\(\Rightarrow y\le\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+\dfrac{1}{4}\) và dấu ''='' xảy ra khi c = 4; a = 6; b = 8