K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

đặt vt=A

\(A>=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}{2\left(a+b+c+d+e\right)}\)(bdt cauchy schwarz)

=>\(\frac{2A}{5}>=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{e}+\sqrt{d}\right)^2}{5\left(a+b+c+d+e\right)}>\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}=1\)(gợi ý:chỗ này dựa vào bdt bunhiacopxki)

=>\(A>=\frac{5}{2}\)

15 tháng 6 2020

@Akai Haruma

25 tháng 1 2021

????????????????????????????????????????

14 tháng 8 2019

Áp dụng bất đẳng thức Cô-si :

\(\frac{a}{b+c}+\frac{b+c}{4a}\ge2\sqrt{\frac{a\left(b+c\right)}{4a\left(b+c\right)}}=1\)

Tương tự với các phân thức còn lại, sau đó cộng theo vế ta được :

\(VT+\frac{b+c}{4a}+\frac{c+d}{4b}+\frac{d+e}{4c}+\frac{e+a}{4d}+\frac{a+b}{4e}\ge5\)

\(\Leftrightarrow VT\ge5-\frac{1}{4}\left(\frac{b+c}{a}+\frac{c+d}{b}+\frac{d+e}{c}+\frac{e+a}{d}+\frac{a+b}{e}\right)\)

\(=5-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}+\frac{e}{c}+\frac{e}{d}+\frac{a}{d}+\frac{a}{e}+\frac{b}{e}\right)\)

\(\ge5-\frac{1}{4}\cdot10\sqrt[10]{\frac{b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e\cdot a\cdot a\cdot b}{a\cdot a\cdot b\cdot b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e}}=5-\frac{1}{4}\cdot10=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=e=1\)

2 tháng 2 2017

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a-b+c-d}{b-c+d-e}\left(1\right)\)

Ta lại có: \(\left\{\begin{matrix}\frac{a}{b}=\frac{b}{c}\\\frac{c}{d}=\frac{d}{e}\\\frac{b}{c}=\frac{c}{d}\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}a=\frac{b^2}{c}\\e=\frac{d^2}{c}\\d=\frac{c^2}{b}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{e}=\frac{b^2}{d^2}\\d=\frac{c^2}{b}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{e}=\frac{b^2}{\left(\frac{c^2}{b}\right)^2}=\frac{b^4}{c^4}\left(2\right)\)

Từ (1) và (2) suy ra: \(\frac{a}{e}=\left(\frac{a-b+c-d}{b-c+d-e}\right)^4\)

8 tháng 9 2018

Đặt;\(\frac{a}{d}=x;\frac{b}{e}=y;\frac{c}{f}=z\left(x,y,z>0\right)\)\(\Rightarrow\)Ta cần tính \(x^2+y^2+z^2\)

Suy ra ta có hệ phương trình;\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\end{cases}}\)

Từ (2) suy ra xy+yz+xz=0

Lại có \(1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

Suy ra \(x^2+y^2+z^2=1\)

2 tháng 6 2017

câu 1 tớ bị nhầm đề là c/a :)

26 tháng 10 2017

Lại gặp đồng râm rồi t c~ ở B.Ninh :_. Theo mk biết thì cái này dùng luôn được nhé vì nó chỉ là biến thể của BĐT Cauchy-Schwarz thôi mà c/m nó cũng dễ. Mk cm dạng tổng quát của nó luôn nhé

\(\left\{{}\begin{matrix}a_1;a_2;....;a_n\\b_1;b_2;....;b_n\end{matrix}\right.\)\(>0\). CMR \(\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a_n^2}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\right)\left(b_1+b_2+...+b_2\right)\ge\left(a_1+a_2+...+a_n\right)^2\)

\(\Leftrightarrow\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{\left(b_1+b_2+...+b_2\right)}\) *đúng*

28 tháng 10 2017

Dc chứ bạn đấy là bđt cơ bản mà
Cauchy -schwarz hay còn gọi là bunhia dạng phân số :)