K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Lời giải:

a)

Theo bất đẳng thức AM-GM ta có:

\(ab(a+b)+bc(b+c)+ac(c+a)\)

\(=a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\geq 6\sqrt[6]{a^2b.ab^2.b^2c.bc^2.c^2a.ca^2}\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq 6abc\)

\(\Leftrightarrow ab(a+b-2c)+bc(b+c-2a)+ca(c+a-2b)\geq 0\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+cb-c^2}\)

\(\geq \frac{(a+b+c)^2}{ab+ac-a^2+ab+bc-b^2+ca+cb-c^2}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}\)

Vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

hay \(2(ab+bc+ac)-(a^2+b^2+c^2)>0\)

Mặt khác theo BĐT AM-GM ta có:

\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 2(ab+bc+ac)-(a^2+b^2+c^2)\leq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac}=\frac{a^2+b^2+c^2+2(ab+bc+ac)}{ab+bc+ac}\geq \frac{3(ab+bc+ac)}{ab+bc+ac}=3\)

Vậy ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

NV
20 tháng 12 2020

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3+\dfrac{2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge5-\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)

Do \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}=\dfrac{2a^2}{ab+ac}+\dfrac{2b^2}{bc+ab}+\dfrac{2c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)

Điều này hiển nhiên đúng do:

\(VT=\dfrac{2}{3}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}+\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

\(VT\ge2\sqrt{\dfrac{12\left(a+b+c\right)^2\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=5\)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Dấu >= hay <= vậy bạn? Bạn xem lại đề.

26 tháng 5 2023

>= ạ

NV
13 tháng 1

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

13 tháng 1

Anh giúp em câu này ạ, câu này hơi khó anh ạ, làm chắc cũng lâu, có gì anh để mai cũng được ạ! 

https://hoc24.vn/cau-hoi/cho-hinh-chop-sabcd-co-day-la-hinh-binh-hanh-m-va-p-la-hai-diem-lan-luot-di-dong-tren-ad-va-sc-sao-cho-mamd-pspc-x-x0-mat-phang-a-di-qua-m-va-song-song-voi-sab-cat-hinh-chop-sabcd-t.8753881358034

NV
24 tháng 5 2021

Bài này có bạn giải rồi:

Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24

5 tháng 12 2018

@Akai Haruma

8 tháng 7 2017

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) ta được

\(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{2b}\ge\dfrac{9}{2\left(a+2b\right)}\)

\(\dfrac{1}{2b}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge\dfrac{9}{2\left(b+2c\right)}\)

\(\dfrac{1}{2c}+\dfrac{1}{2a}+\dfrac{1}{2a}\ge\dfrac{9}{2\left(c+2a\right)}\)

Cộng các BĐT theo vế

\(\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9}{2}\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

Dấu " = " xảy ra khi a = b = c ( a,b,c > 0 )

19 tháng 1 2022

Trl linh tinhbucqua

19 tháng 1 2022

bớt spam lại