K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

Do giả thiết  1\le ab  nên 1\le\sqrt{ab}\le\dfrac{a+b}{2}. Vì vậy ta tìm cách ước lượng giảm bậc của biến a,b từ 3 xuống 1, tức là phải dùng Cô si cho 3 số dương.

Áp dụng Cô si cho 3 số dương     \dfrac{a^3}{1+b};\dfrac{1+b}{x};y ta có

                           \dfrac{a^3}{1+b}+\dfrac{1+b}{x}+y\ge3a\sqrt[3]{\dfrac{y}{x}}   (1)

Kì vọng rằng bất đẳng thức cần chứng minh trở thành đẳng thức khi a=b=1 nghĩa là

khi a=b=1 phải có    \dfrac{a^3}{1+b}=\dfrac{1+b}{x}=y  hay   \dfrac{1}{2}=\dfrac{2}{x}=y\Leftrightarrow x=4;y=\dfrac{1}{2}

(1) trở thành     

                              \dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3a\sqrt[3]{\dfrac{1}{8}}=\dfrac{3a}{2} 

Tương tự              \dfrac{b^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2} 

Cộng theo vế hai bất đẳng thức này ta suy ra  

                       \dfrac{a^3}{1+b}+\dfrac{b^3}{1+a}+\dfrac{3}{2}\ge\dfrac{5}{4}\left(a+b\right)\ge\dfrac{5}{2}\sqrt{ab}\ge\dfrac{5}{2}

    Do đó           \dfrac{a^3}{1+b}+\dfrac{b^3}{1+a}\ge1

6 tháng 3 2021

* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)

Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)

Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)

Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)

Đẳng thức xảy ra khi a = b = c = 1

8 tháng 3 2021

cảm ơn ạ

NV
4 tháng 10 2021

\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\)

\(\Leftrightarrow2\ge\dfrac{a+b}{a+b+1}+\dfrac{b+c}{b+c+1}+\dfrac{c+a}{c+a+1}=\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+a+b}+\dfrac{\left(b+c\right)^2}{\left(b+c\right)^2+b+c}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)^2+c+a}\)

\(\Rightarrow2\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca+a+b+c}\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+2\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)

\(\Rightarrow\)đpcm

NV
4 tháng 10 2021

\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)

\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

NV
6 tháng 3 2021

\(\dfrac{1}{a^2+a+1}\ge\dfrac{1}{a^2+\dfrac{a^2+1}{2}+1}=\dfrac{2}{3}.\dfrac{1}{a^2+1}=\dfrac{2}{3}\left(1-\dfrac{a^2}{a^2+1}\right)\ge\dfrac{2}{3}\left(1-\dfrac{a}{2}\right)\)

Tương tự và cộng lại: \(VT\ge\dfrac{2}{3}\left(3-\dfrac{a+b+c}{2}\right)=\dfrac{2}{3}.\dfrac{3}{2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 1 2021

Từ \(a+b\ge1=>b\ge1-a>0\) ta có:

A = \(\dfrac{8a^2+b}{4a}+b^2\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)

=\(\dfrac{8a^2-a+1+4a^3-8a^2+4a}{4a}=\dfrac{4a^3-4a^2+a+4a^2-4a+1+6a}{4a}\)

\(\dfrac{a\left(2a-1\right)^2+\left(2a-1\right)^2}{4a}+\dfrac{3}{2}=\dfrac{\left(2a-1\right)^2\left(a+1\right)}{4a}+\dfrac{3}{2}\left(1\right)\)

Vì với a>0 thì\(\dfrac{\left(2a-1\right)^2\left(a+1\right)}{4a}\ge0\)

Dấu = xảy ra khi a=1/2

Nên từ (1) => A\(\ge0+\dfrac{3}{2}\) hay A\(\ge\dfrac{3}{2}\)

Vậy GTNN của A=3/2 khi a=b=1/2

 

6 tháng 1 2021

A = \(\dfrac{8a^2+b}{4a}+b^2\)

Ta có: a + b \(\ge\) 1 \(\Leftrightarrow\) b \(\ge\) 1 - a

\(\Rightarrow\) A \(\ge\) \(\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)

\(\Leftrightarrow\) A \(\ge\) 2a + \(\dfrac{1}{4a}\) - \(\dfrac{1}{4}\) + 1 - 2a + a2

\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{4a}\) + \(\dfrac{3}{4}\)

\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\)

Áp dụng BĐT Cô-si cho 3 số dương a2\(\dfrac{1}{8a}\)\(\dfrac{1}{8a}\)

a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) \(\ge\) 3\(\sqrt[3]{\dfrac{a^2}{64a^2}}\) = 3\(\sqrt[3]{64}\) = 3.4 = 12

\(\Leftrightarrow\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) 12 + \(\dfrac{3}{4}\) = \(\dfrac{51}{4}\)

Hay A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{51}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\) a2 = \(\dfrac{1}{8a}\) \(\Leftrightarrow\) 8a3 = 1 \(\Leftrightarrow\) a\(\dfrac{1}{8}\) \(\Leftrightarrow\) a = \(\dfrac{1}{2}\)

và b = 1 - a \(\Leftrightarrow\) b = 1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\)

Vậy MinA = \(\dfrac{51}{4}\) \(\Leftrightarrow\) a = b = \(\dfrac{1}{2}\)

 Chúc bn học tốt! (ko chắc lắm đâu)

NV
11 tháng 9 2021

Chắc là a;b;c hết chứ?

\(VT=\dfrac{a}{a+b+c+b-a}+\dfrac{b}{a+b+c+c-b}+\dfrac{c}{a+b+c+a-c}\)

\(VT=\dfrac{a}{c+2b}+\dfrac{b}{a+2c}+\dfrac{c}{b+2a}=\dfrac{a^2}{ac+2ab}+\dfrac{b^2}{ab+2bc}+\dfrac{c^2}{bc+2ac}\)

\(VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\) (đpcm)

11 tháng 9 2021

cho x,y,z>0 ,x+y+z=1 chu nhi?

\(\Rightarrow\dfrac{x}{x+y+z+y-x}=\dfrac{x}{2y+z}\)

\(\Rightarrow\dfrac{y}{1+z-y}=\dfrac{y}{x+y+z+z-y}=\dfrac{y}{2z+x}\)

\(\Rightarrow\dfrac{z}{1+x-z}=\dfrac{z}{x+y+z+x-z}=\dfrac{z}{2x+y}\)

\(\Rightarrow A=\dfrac{x}{2y+z}+\dfrac{y}{2z+x}+\dfrac{z}{2x+y}=\dfrac{x^2}{2xy+xz}+\dfrac{y^2}{2zy+xy}+\dfrac{z^2}{2xz+xz}\ge\dfrac{\left(x+y+z\right)^2}{3\left(xy+yz+xz\right)}=1\)

dau"=" xay ra<=>x=y=z=1/3