K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

\(a^2+b^2+1-2ab-2a+2b=4b\)

\(\left(a-b-1\right)^2=4b=4.k^2=\left(2k\right)^2\)  ; với b = k2

=> a -k2 -1 =2k => a =k+2k+1 =(k+1)2

hoặc a - k2 -1 = -2 k => a = (k -1)2 

=> Vậy .....

21 tháng 11 2015

Cristiano Ronaldo nói dễ thì làm đi

28 tháng 7 2016

Ta có:  \(a^2+b^2+1=2\left(ab+a+b\right)\)

\(\Leftrightarrow\)\(a^2+b^2+1-2ab-2a-2b=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)-2a+2b+1-4b=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2-2\left(a-b\right)+1=4b\)

\(\Leftrightarrow\)\(\left(a-b-1\right)^2=4b\)                                                             \(\left(1\right)\)

Do đó \(4b\)là một số chính phương, mà 4 là số chính phương suy ra b là số chính phương.

Đặt  \(b=x^2,\)thay vào \(\left(1\right)\):                           \(\left(a-x^2-1\right)^2=4x^2\)

                                                                   \(\Leftrightarrow\)\(\left(a-x^2-1\right)^2=\left(2x\right)^2\)

                  * Xét 2 trường hợp:

- Trường hợp 1: \(a-x^2-1=2x\)\(\Leftrightarrow\)\(a=x^2+2x+1=\left(x+1\right)^2\)

Ta có  \(b=x^2\)và  \(a=\left(x+1\right)^2\)\(\Rightarrow\)\(a\)và  \(b\)là 2 số chính phương liên tiếp.

- Trường hợp 2:  \(a-x^2-1=-2x\)\(\Leftrightarrow\)\(a=x^2-2x+1=\left(x-1\right)^2\)

Ta có  \(b=x^2\)và  \(a=\left(x-1\right)^2\)\(\Rightarrow\)\(a\)và  \(b\)là 2 số chính phương liên tiếp.

                           Vậy  \(a\)và  \(b\)là 2 số chính phương liên tiếp.

28 tháng 7 2016

hi chao ban

9 tháng 8 2023

Ta đặt \(a^2+4b+3=k^2\) 

\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)

Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)

Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)

\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)

\(\Leftrightarrow c^2+c+1+b=l^2\)

Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.

Nếu \(c< b< 2c+1\) thì

\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.

Do vậy, \(c=b\) hay \(a=2b+1\)

Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.

 

3 tháng 8 2023

Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.

6 tháng 11 2017

Có 2a^2 + a = 3b^2 + b

<=> 2a^2 + a - 3b^2 - b = 0

<=> 3a^2 + a - 3b^2 - b = a^2

Xét (a-b).(3a+3b+1) = 3a^2-3ab+3ab-3b^2+a-b = 3a^2-3b^2+a-b = a^2 là 1 số chính phương (1)

Gọi ƯCLN của a-b;3a+3b+1 là d ( d thuộc N sao )

 => a-b chia hết cho d

     3a+3b+1 chia hết cho d

     a^2 chia hết cho d^2

=> a-b chia hết cho d , 3a+3b +1 chia hết cho d , a chia hết cho d

=> a chia hết cho d , b chia hết cho d , 3a+3b+1 chia hết cho d

=> 1 chia hết cho d => d = 1 ( vì d thuộc N sao )

=> a-b và 3a+3b+1 nguyên tố cùng nhau (2)

Từ (1) và (2) => a-b và 3a+3b+1 đều là số chính phương