K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Xét hiệu:

\(\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2+b^2-2ab}{ab}\)

\(=\dfrac{\left(a-b\right)^2}{ab}\ge0\)\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Dấu = xảy ra \(\Leftrightarrow a=b\)

14 tháng 5 2018

Trả lời

a^2 + b^2 - 2ab

= ( a^2 - 2ab + b^2 )

= ( a - b )^2 ≥ 0 ( luôn đúng )

Vậy...

14 tháng 5 2018

\(a^2+b^2-2ab=\left(a-b\right)^2\ge\forall a,b\)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

30 tháng 4 2017

(a+b)^2>=4ab

1>=4ab

ab<=1/4

a^3+b^3=(a+b)(a^2-ab+b^2)=a^2-ab+b^2=a^2+2ab+b^3-3ab

=(a+b)^2-3ab=1-3ab>=1-3.1/4=1/4

suy ra đpcm 

a^2/b+b^2/a>=a+b

=>a^3+b^3>=ab(a+b)

=>a^3+b^3-a^2b-ab^2>=0

=>a^2(a-b)+b^2(b-a)>=0

=>(a-b)^2(a+b)>=0(luôn đúng)

16 tháng 4 2020

\(\frac{a^2+b^2}{2}\ge ab\)(1)

<=> \(a^2+b^2\ge2ab\)

<=> \(a^2+b^2-2ab\ge0\)

<=> \(\left(a-b\right)^2\ge0\)đúng với a, b bất kì 

Vậy (1) đúng với mọi a, b  bất kì

30 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a = b

30 tháng 3 2021

úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé

2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab

= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )

Sử dụng kết quả ở bài trước ta có đpcm

Đẳng thức xảy ra <=> a=b=1/2

28 tháng 3 2018

Áp dụng BĐT Cauchy-Schwarz dưới dạng phân số ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)

<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (vì a+b+c=1) (đpcm)

28 tháng 3 2018

Cách khác dùng AM-GM

Áp dụng bđt AM-GM cho 3 số không âm ta được:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)

Tiếp tục áp dụng bđt AM-GM cho 3 số không âm ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\dfrac{3}{\sqrt[3]{abc}}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)